Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

EXtreme-scale Analytics via Multimodal Ontology Discovery & Enhancement

Opis projektu

Zastosowanie ekstremalnych metod analitycznych w ochronie zdrowia

Eksaskalowe wolumeny różnorodnych danych dotyczących opieki zdrowotnej wyróżniają się pod względem ich ilości (w 2020 roku ilość wyprodukowanych danych przekroczyła 2 000 eksabajtów), niejednorodności (liczne nośniki i metody pozyskiwania), wiedzy (raporty diagnostyczne) i wartości handlowej. Ze względu na potrzebę nadzorowania modele głębokiego uczenia wymagają dużych ilości opatrzonych etykietami i adnotacjami danych, co uniemożliwia im wydobywanie z danych wiedzy i wartości. Celem finansowanego ze środków UE projektu EXA MODE jest umożliwienie łatwego i szybkiego pozyskiwania wiedzy z niejednorodnych eksaskalowych danych bez ścisłego nadzoru, ograniczając potrzebę interakcji ze strony człowieka. Cele projektu obejmują opracowanie i udostępnienie nowych metod i narzędzi do analizy danych w ekstremalnej skali w celu uzyskania precyzyjnych prognoz wspierających podejmowanie decyzji w środowisku przemysłowym i szpitalnym. Multimodalne, semantyczne oprogramowanie pośredniczące pozwoli na łatwiejsze i szybsze zarządzanie niejednorodnymi danymi oraz ich analizę, ulepszając architektury złożonych systemów rozproszonych oraz zwiększając szybkość przepływu i dostępu do danych.

Cel

Exascale volumes of diverse data from distributed sources are continuously produced. Healthcare data stand out in the size produced (production 2020 >2000 exabytes), heterogeneity (many media, acquisition methods), included knowledge (e.g. diagnostic reports) and commercial value. The supervised nature of deep learning models requires large labeled, annotated data, which precludes models to extract knowledge and value. EXA MODE solves this by allowing easy & fast, weakly supervised knowledge discovery of exascale heterogeneous data provided by the partners, limiting human interaction. Its objectives include the development and release of extreme analytic methods and tools, that are adopted in decision making by industry and hospitals. Deep learning naturally allows to build semantic representations of entities and relations in multimodal data. Knowledge discovery is performed via document-level semantic networks in text and the extraction of homogeneous features in heterogeneous images. The results are fused, aligned to medical ontologies, visualized and refined. Knowledge is then applied using a semantic middleware to compress, segment and classify images and it is exploited in decision support and semantic knowledge management prototypes. EXA MODE is relevant to ICT12 in several aspects: 1) Challenge: it extracts knowledge and value from heterogeneous quickly increasing data volumes. 2) Scope: the consortium develops and releases new methods and concepts for extreme scale analytics to accelerate deep analysis also via data compression, for precise predictions, support decision making and visualize multi-modal knowledge. 3) Impact: the multi-modal/media semantic middleware makes heterogeneous data management & analysis easier & faster, it improves architectures for complex distributed systems with better tools increasing speed of data throughput and access, as resulting from tests in extreme analysis by industry and in hospitals.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

RIA - Research and Innovation action

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) H2020-ICT-2018-20

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

HAUTE ECOLE SPECIALISEE DE SUISSE OCCIDENTALE
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 886 875,00
Adres
Route de Moutier 14
2800 Delemont
Szwajcaria

Zobacz na mapie

Region
Schweiz/Suisse/Svizzera Espace Mittelland Jura
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 886 875,00

Uczestnicy (9)

Moja broszura 0 0