Periodic Reporting for period 3 - GREATDIGINTHESKY (Accelerating Galactic Archaeology)
Okres sprawozdawczy: 2022-10-01 do 2024-03-31
The recent revolution in the quality of astronomical data for nearby galactic systems, especially for the Milky Way, now permits a careful reassessment of dark matter and gravity theories. The data of particular importance are the astrometric observations from the European Gaia space mission that has measured distances and transverse motions of stars out to approximately 30,000 light years with exquisite accuracy. Our team has developed a method to use these Gaia data together with other surveys of the sky to identify a large number of star streams in the Milky Way. These structures appear as long bands of stars on the sky that share share similar distances and velocity. They are challenging to detect due to the overwhelming contamination from billions of normal Milky Way stars that they share space with. These star streams are relics from ancient dwarf galaxies and star clusters that were slowly wrecked over cosmic time due to the tidal forces of the Milky Way. Their importance is that the stars that they are composed of have very similar orbits, and as such they can be used to put stringent constraints on the acceleration field (i.e. on the force field) of our Galaxy.
Since theories of gravity and dark matter are effectively recipes for the force field, our ambition is to use the new state-of-the-art data to see which model works best, and which ones can be ruled out. Needless to say, contributing to the solution of this very fundamental problem of physics will help improve our understanding of the universe, of mass, and of the force of gravity.
These star streams also tell us directly about the structures that fell into the Milky Way, thereby contributing to its buildup and formation. Indeed, using an objective measure of correlation between infalling satellites and star streams, our team has been able to identify six families of accreted structures, testifying that there were at least six different main accretion events that occurred in the Milky Way’s distant past. Another highlight of our work was the discovery of the most metal-poor structure yet known (i.e. the closest in chemical makeup to primordial matter), which as it so happens is now a stellar stream. Interestingly, this most ancient of objects possesses chemical patterns that resemble a star cluster, whereas its kinematics are more suggestive of a small galaxy.
Our team naturally has also been studying the properties of the most metal-poor stars in the Milky Way, as they are relics from the earliest stages of the formation of our Galaxy. By using surveys that sieve out metal poor stars (e.g. with narrow-band photometric filters) we are able to dig deeper into the Galactic contamination and detect star streams that would otherwise be below our detection threshold, thus increasing our sample of useful structures for dynamical analysis.
We have also devoted a large effort to building the computational machinery to model the Milky Way and its stellar streams in such a way as to remain as agnostic as possible to the underlying physics. This is important, as we want to make sure that we would be able to detect unexpected properties of gravity, if they are real. To this end we have built analysis codes that use, for instance, neural networks and machine learning to allow the data to tell us the preferred relationships in the data.
Over the coming two and a half years we will continue to apply for follow-up spectroscopy from ground-based instruments to measure the fainter counterparts to the detected streams, and thus increase the stream membership statistics. It is worth mentioning that in parallel, we have been awarded time to undertake a large community survey at the 4MOST telescope (PI: Ibata) to measure the line of sight velocities of RR Lyrae stars (which are uniquely accurate distance probes). This will eventually result in a sample of approximately 150,000 RR Lyrae stars with excellent velocities which will anchor our stream fits in the most distant reaches of the Milky Way.
We expect the bulk of the remaining work, and of the challenges, for the present “GreatDigInTheSky” project to be in the modelling of galaxies and stellar streams under the different prescriptions of gravity and dark matter. To this end we have been developing algorithms that can be added as optional modules to a community-developed galaxy simulation code that follows the dynamical evolution of stars, gas and dark matter. Over the next 18 months, we will make predictions for the properties of galaxies and the shape, smoothness and kinematics of streams in several dark matter and alternative gravity models. The final year of the project will be devoted to comparing the observations to those predictions.