Project description
New technology for future IoT devices
Beyond the laptop and smartphones, there are billions of devices that are connected to the internet, such as a smart refrigerator that can create grocery lists. At the heart of any IoT device is a microcontroller (MCU), which has logic transistors for processing data and embedded non-volatile memory (eNVM) for storing data. Most MCUs are manufactured at 40 nm nodes or above. Smaller technology nodes, like 28 nm, promise lower power and lower cost, which is critical for IoT adoption. In this context, the EU-funded IoTMemory project will search for a solution – a new eNVM technology. Specifically, researchers will carve out a clear path to eNVM cells even at the 7 nm node – the most advanced technology node available today.
Objective
Serving the €17bn microcontroller industry: Every IoT device needs a microcontroller (MCU). Each MCU has logic transistors for processing data and eNVM (flash) for storing data, among other components. Most microcontrollers today are manufactured at 40nm nodes or above. Smaller technology nodes, like 28nm, promise lower power and lower cost, critical for IoT adoption. Logic transistor scale down fine to 28nm and below. But Flash does not scale down to smaller technology nodes – the effects of Moore’s law have hit a physical limit at 28nm for Flash memory; writing data will destroy them. Consequentially, the benefits of 28nm will be denied to MCU vendors, unless a new eNVM technology is found.
FeFET, the ferroelectric field effect transistor by FMC, is based on the discovery that hafnium oxide, the gate material of modern logic transistors, can be modified such that it becomes ferro-electric. By applying a positive or negative voltage, the material can store a 0 or 1. The gate remembers the state even when power is turned off – the transistor becomes a non-volatile memory cell. As hafnium oxide retains ferro electricity to at least 2nm film thickness, we have clear path to eNVM cells even at the 7nm node – the most advanced technology node available today.
In Phase 1, FMC wants to better understand the technical requirements in various sectors of the microcontroller market, develop a communication approach, and develop a detailed plan how to meet their application specific functional and performance requirements.
Today, FMC is focused on advancing its technology from TRL5 to TRL6 to satisfy minimum viable product properties ahead of commencing prototype production. In Phase 2, FMC will use the base technology to create a range of custom-specific memory macros that satisfy the requirement of different market segments and customer types (TRL7-8).
The company should reach more than 115M€ revenues by 2024 provided it can raise the required financing.
Fields of science
- engineering and technologymechanical engineeringmanufacturing engineering
- natural sciencescomputer and information sciencesinternetinternet of things
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsoptical sensors
- natural scienceschemical sciencesinorganic chemistrytransition metals
- natural sciencescomputer and information sciencesartificial intelligencemachine learningdeep learning
Programme(s)
Funding Scheme
SME-1 - SME instrument phase 1Coordinator
01099 Dresden
Germany
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.