Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS

Bacterial membrane vesicles a novel delivery system for the treatment of multi-drug resistant Gram-negative bacterial infections.

Projektbeschreibung

Mit bakteriellen Membranvesikeln gegen Antibiotikaresistenz

Angesichts einer sich weiter entwickelnden Antibiotikaresistenz bei gleichzeitig wenigen neuen Wirkstoffen stehen nun gramnegative Bakterien auf der medizinischen Prioritätenliste recht weit oben. Das EU-finanzierte Projekt BacDrug will die hochselektive äußere Membran gramnegativer Krankheitserreger mithilfe von lipidbasierten bakteriellen Membranvesikeln durchdringen. Bakterielle Membranvesikel werden vom nicht pathogenen Bakterium Lactococcus lactis erzeugt und dienen als Verabreichungssystem von Wirkstoffen. Da sie nur wenige Nanometer groß sind, können sie die Bakterienmembran passieren und gramnegative antibiotikaresistente Krankheitserreger abtöten. Mit diesem therapeutischen Ansatz könnte eine Lösung für das Problem der Antibiotikaresistenz gefunden und die Gesundheit der Menschen besser geschützt werden.

Ziel

"Bacterial infections are a significant public health challenge and a major cause of human mortality globally. Antibiotics are indispensable for the treatment and prevention of infections caused by bacteria. However, global spread of drug-resistant bacteria, coupled with a dearth of new antibiotics in development has led to an alarming shortage of effective drugs. Gram-negative bacteria, in particular, protect themselves against antibiotics with a highly selective outer membrane. The high burden of diseases caused by Gram-negative bacteria, combined with their frequent multi-drug resistance has placed them as world´s highest-priority pathogens by the World Health Organization. Consequently, there is an urgent need for novel therapeutic approaches that combat Gram-negative bacterial pathogens. The goal of ""BacDrug"" is to use lipid-based bacterial membrane vesicles (BMVs) produced by non-pathogenic Lactococcus lactis as delivery system. BMVs have great potential as nanocarriers to by-pass the outer membrane and deliver their toxic payload to kill drug-resistant Gram-negative pathogens. A range of strategies will be used to load BMVs with cargo, including genetic engineering of L. lactis as well as chemical treatments. This Fellowship will harness expertise and techniques across microbiology, molecular biology, nanotechnology and drug design to deliver a successful outcome. The collaborative, truly interdisciplinary, cross faculty setting within the groups of Prof Molly Stevens (materials and bioengineering) and Dr Andrew Edwards (molecular microbiology) at ICL combines world-class expertise and provides an environment to maximise the success of this Fellowship, both in terms of the delivering the project and the training opportunities provided. Moreover, this innovative, alternative strategy to tackle drug-resistant Gram-negative bacterial infections has a high translational potential, which will be exploited via the clinical and translational research clinics at ICL."

Koordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Netto-EU-Beitrag
€ 212 933,76
Adresse
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ LONDON
Vereinigtes Königreich

Auf der Karte ansehen

Region
London Inner London — West Westminster
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 212 933,76