Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

The spectrum of infinite monster groups

Projektbeschreibung

Neue Methoden zum Aufbau unendlicher Monstergruppen

Gruppen bezeichnen abstrakte algebraische Strukturen, die den Begriff der Symmetrie mathematisch codieren. Sie sind in sämtlichen Bereichen der Mathematik allgegenwärtig und haben auch wichtige Auswirkungen auf die theoretische Physik und die Informatik. Ein wichtiger Bestandteil der Gruppentheorie ist die Theorie unendlicher Monstergruppen, die Beispiele für unendliche Gruppen mit außergewöhnlichen geometrischen, analytischen und algebraischen Eigenschaften bietet. Das im Rahmen der Marie-Skłodowska-Curie-Maßnahmen finanzierte Projekt SPECMON plant nun die Entwicklung neuer Methoden zum Aufbau solcher unendlichen Monstergruppen. Mit diesen Methoden sollen schließlich wichtige offene Fragen wie Diximiers Problem bezüglich unitarisierbarer Gruppen, Kaplanskys Nullteiler-Vermutung und die Baum-Connes-Vermutung untersucht werden.

Ziel

Groups are abstract algebraic structures that mathematically encode the notion of symmetry. Groups are ubiquitous in all areas of mathematics and have applications, for example, to theoretical physics and computer science. Group theory tries to understand particular classes as well as global properties of groups. The theory of infinite monster groups is a crucial part of the theory. It provides examples of infinite groups with exceptional geometric, analytic, and algebraic properties, thus clarifying boundaries of classes of groups and often resolving outstanding open questions.

This project aims to develop further methods for constructing and studying infinite monster groups, providing new techniques for producing such groups as well as a deeper understanding of the spectrum of phenomena encountered in the existing theory. The monsters within the scope of this project arise from methods of geometric group theory, which studies finitely generated infinite groups through their actions on geometric structures. The planned work will benefit greatly from the excellent synergies between the ER's geometric viewpoint and Prof. Thom's more analytic viewpoint on infinite groups, a combination which has produced outstanding results in the past.

The methods and results developed in this project will lead to significant advances in outstanding open questions. Particular topics addressed by the project are, for example: Diximier's problem on unitarizability of groups (open since 1950), the Kaplansky zero-divisor conjecture (1956), the Baum-Connes conjecture (1982), and the open questions of residual finiteness of hyperbolic groups and of quasi-isometry invariance of acylindrical hyperbolicity. Furthermore, the project will lead to new models of random groups, in particular infinitely presented ones and periodic ones.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) H2020-MSCA-IF-2018

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

TECHNISCHE UNIVERSITAET DRESDEN
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 162 806,40
Adresse
HELMHOLTZSTRASSE 10
01069 DRESDEN
Deutschland

Auf der Karte ansehen

Region
Sachsen Dresden Dresden, Kreisfreie Stadt
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 162 806,40
Mein Booklet 0 0