Projektbeschreibung
Neue Methoden zum Aufbau unendlicher Monstergruppen
Gruppen bezeichnen abstrakte algebraische Strukturen, die den Begriff der Symmetrie mathematisch codieren. Sie sind in sämtlichen Bereichen der Mathematik allgegenwärtig und haben auch wichtige Auswirkungen auf die theoretische Physik und die Informatik. Ein wichtiger Bestandteil der Gruppentheorie ist die Theorie unendlicher Monstergruppen, die Beispiele für unendliche Gruppen mit außergewöhnlichen geometrischen, analytischen und algebraischen Eigenschaften bietet. Das im Rahmen der Marie-Skłodowska-Curie-Maßnahmen finanzierte Projekt SPECMON plant nun die Entwicklung neuer Methoden zum Aufbau solcher unendlichen Monstergruppen. Mit diesen Methoden sollen schließlich wichtige offene Fragen wie Diximiers Problem bezüglich unitarisierbarer Gruppen, Kaplanskys Nullteiler-Vermutung und die Baum-Connes-Vermutung untersucht werden.
Ziel
Groups are abstract algebraic structures that mathematically encode the notion of symmetry. Groups are ubiquitous in all areas of mathematics and have applications, for example, to theoretical physics and computer science. Group theory tries to understand particular classes as well as global properties of groups. The theory of infinite monster groups is a crucial part of the theory. It provides examples of infinite groups with exceptional geometric, analytic, and algebraic properties, thus clarifying boundaries of classes of groups and often resolving outstanding open questions.
This project aims to develop further methods for constructing and studying infinite monster groups, providing new techniques for producing such groups as well as a deeper understanding of the spectrum of phenomena encountered in the existing theory. The monsters within the scope of this project arise from methods of geometric group theory, which studies finitely generated infinite groups through their actions on geometric structures. The planned work will benefit greatly from the excellent synergies between the ER's geometric viewpoint and Prof. Thom's more analytic viewpoint on infinite groups, a combination which has produced outstanding results in the past.
The methods and results developed in this project will lead to significant advances in outstanding open questions. Particular topics addressed by the project are, for example: Diximier's problem on unitarizability of groups (open since 1950), the Kaplansky zero-divisor conjecture (1956), the Baum-Connes conjecture (1982), and the open questions of residual finiteness of hyperbolic groups and of quasi-isometry invariance of acylindrical hyperbolicity. Furthermore, the project will lead to new models of random groups, in particular infinitely presented ones and periodic ones.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Informatik und Informationswissenschaften
- Naturwissenschaften Mathematik
- Naturwissenschaften Naturwissenschaften theoretische Physik
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) H2020-MSCA-IF-2018
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
01069 DRESDEN
Deutschland
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.