Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Strong Axioms of Infinity: Frameworks, Interactions and Applications

Ziel

In spite of their central role in modern set theory, strong axioms of infinity (or large cardinal axioms) are still surrounded by an aura of vagueness, a lack of generality and many open conceptual questions. After the study of large cardinals has evolved for over eighty years, recent results suggest that it now makes sense to develop a general theory of strong axioms of infinity in which all known large cardinals are seen as milestones in a hierarchy of mathematical principles derived from some much more general considerations about the reflective properties of the set-theoretic universe. The development of such a theory would lead to a breakthrough in our understanding of large cardinals and their role in mathematics, and provide strong justifications for their acceptance as true mathematical statements. In this project, we want to work towards this breakthrough with the help of novel combinations of concepts and techniques from different areas of set theory.

We will develop general frameworks for strong axioms of infinity that incorporate all types of large cardinals studied so far. The work of the proposed supervisor on structural reflection properties and recent pioneering results in combinatorial set theory will serve as the starting points for this work.

Moreover, motivated by the strong influence of large cardinals on the theory of definable sets of real numbers, we will study the impact of these axioms on definability at higher cardinalities. This task is closely related to one of the most important developments in modern set theory, Hugh Woodin’s programme of constructing a canonical inner model containing a supercompact cardinal.

Finally, strong axioms of infinity have recently been used with great success to answer questions in other branches of mathematics, like category theory or homotopy theory. These results opened up a wide area of possible applications of set-theoretic results that we also want to explore in our project.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MSCA-IF-EF-ST - Standard EF

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) H2020-MSCA-IF-2018

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

UNIVERSITAT DE BARCELONA
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 172 932,48
Adresse
GRAN VIA DE LES CORTS CATALANES 585
08007 BARCELONA
Spanien

Auf der Karte ansehen

Region
Este Cataluña Barcelona
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 172 932,48
Mein Booklet 0 0