Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Homological mirror symmetry, Hodge theory, and symplectic topology

Projektbeschreibung

Untersuchung der homologen Spiegelsymmetrie anhand der Hodge-Theorie und symplektischen Topologie

Bei der homologischen Spiegelsymmetrie handelt es sich um eine mathematische Vermutung, mit der das Phänomen der Spiegelsymmetrie erklärt werden soll. Dieses wurde zuerst von Physikerinnen und Physikern beobachtet, die sich mit der Stringtheorie beschäftigten. Ursprünglich galt das Phänomen als Isomorphismus zwischen der Hodge-Theorie einer algebraischen Varietät und der Quantenfeldtheorie von Hodge in Bezug auf die spiegelbildliche symplektische Mannigfaltigkeit. Laut der Vermutung besteht eine Äquivalenz zwischen der abgeleiteten Kategorie der Varietät und der Fukaya-Kategorie ihrer Spiegelung, was wiederum entscheidende Auswirkungen auf verschiedene Bereiche der Mathematik hat. Das EU-finanzierte Projekt HMS wird eine entsprechende Forschung betreiben, um neue Aspekte der Beziehung zwischen der homologischen Spiegelsymmetrie und der Hodge-Theorie hervorzuheben, und bisher unbekannte Anwendungsgebiete für die symplektische Topologie ermitteln.

Ziel

Mirror symmetry is a deep relationship between algebraic and symplectic geometry, with origins in string theory. It was originally envisioned as an isomorphism between the Hodge theory of an algebraic variety and the `quantum Hodge theory' of a `mirror' symplectic manifold, but it was subsequently realized by Kontsevich that the relationship went far deeper. His Homological Mirror Symmetry (HMS) conjecture predicts an equivalence between the derived category of the variety and the Fukaya category of its mirror, and has far-reaching implications for diverse areas of mathematics. In previous work I have proved the conjecture in fundamental cases, established its precise relationship with the Hodge-theoretic version of mirror symmetry, and used these results to solve questions in enumerative geometry and symplectic topology.

The proposed research centres on HMS, new aspects of its relationship with Hodge theory, and new applications to symplectic topology. It is split into four projects:

1. Prove HMS for Gross-Siebert mirrors (this covers the vast majority of mirror pairs proposed in the literature). As a preliminary step in this direction we will prove HMS for Batyrev mirrors.

2. Prove that HMS implies mirror symmetry for open Gromov-Witten invariants. The key step will be the construction of a mirror to the Abel-Jacobi map.

3. Enrich the Hodge-theoretic structures emerging from HMS with rational structures. The key step will be to show that the Gamma rational structure on quantum Hodge theory emerges from the topological K-theory of the Fukaya category.

4. The Lagrangian cobordism group is an important invariant of a symplectic manifold, which can be used to study some of the most fundamental questions in symplectic topology such as the classification of Lagrangian submanifolds. We will elucidate its structure by using its relationship, via HMS, with the Chow group of the mirror variety.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Das Projektteam hat die Klassifizierung dieses Projekts bestätigt.

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-STG - Starting Grant

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2019-STG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

THE UNIVERSITY OF EDINBURGH
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 498 686,00
Adresse
OLD COLLEGE, SOUTH BRIDGE
EH8 9YL Edinburgh
Vereinigtes Königreich

Auf der Karte ansehen

Region
Scotland Eastern Scotland Edinburgh
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 498 686,00

Begünstigte (1)

Mein Booklet 0 0