Descrizione del progetto
Esplorare le interazioni della simmetria speculare omologica con la teoria di Hodge e la topologia simplettica
La simmetria speculare omologica è una congettura matematica che cerca di spiegare il fenomeno chiamato simmetria speculare, osservato per la prima volta dai fisici impegnati nello studio della teoria delle stringhe. Inizialmente, era stata immaginata come un isomorfismo tra la teoria di Hodge su una varietà algebrica e la teoria quantistica di Hodge di una varietà simplettica a specchio. La congettura prevede l’equivalenza tra la categoria derivata della varietà e la categoria di Fukaya del suo speculare, con importanti implicazioni per diverse aree della matematica. Il progetto HMS, finanziato dall’UE, condurrà ricerche per mettere in luce nuovi aspetti del rapporto tra simmetria speculare omologica e teoria di Hodge e identificherà applicazioni precedentemente sconosciute della topologia simplettica.
Obiettivo
Mirror symmetry is a deep relationship between algebraic and symplectic geometry, with origins in string theory. It was originally envisioned as an isomorphism between the Hodge theory of an algebraic variety and the `quantum Hodge theory' of a `mirror' symplectic manifold, but it was subsequently realized by Kontsevich that the relationship went far deeper. His Homological Mirror Symmetry (HMS) conjecture predicts an equivalence between the derived category of the variety and the Fukaya category of its mirror, and has far-reaching implications for diverse areas of mathematics. In previous work I have proved the conjecture in fundamental cases, established its precise relationship with the Hodge-theoretic version of mirror symmetry, and used these results to solve questions in enumerative geometry and symplectic topology.
The proposed research centres on HMS, new aspects of its relationship with Hodge theory, and new applications to symplectic topology. It is split into four projects:
1. Prove HMS for Gross-Siebert mirrors (this covers the vast majority of mirror pairs proposed in the literature). As a preliminary step in this direction we will prove HMS for Batyrev mirrors.
2. Prove that HMS implies mirror symmetry for open Gromov-Witten invariants. The key step will be the construction of a mirror to the Abel-Jacobi map.
3. Enrich the Hodge-theoretic structures emerging from HMS with rational structures. The key step will be to show that the Gamma rational structure on quantum Hodge theory emerges from the topological K-theory of the Fukaya category.
4. The Lagrangian cobordism group is an important invariant of a symplectic manifold, which can be used to study some of the most fundamental questions in symplectic topology such as the classification of Lagrangian submanifolds. We will elucidate its structure by using its relationship, via HMS, with the Chow group of the mirror variety.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
La classificazione di questo progetto è stata convalidata dal team del progetto.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
La classificazione di questo progetto è stata convalidata dal team del progetto.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
ERC-STG - Starting Grant
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2019-STG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
EH8 9YL Edinburgh
Regno Unito
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.