Description du projet
Un principe variationnel concernant la régularité des problèmes à frontière libre
Les problèmes à frontière libre, qui font intervenir une équation différentielle partielle sur un domaine dont la frontière est libre, se posent naturellement dans un grand nombre de modèles différents en physique, en ingénierie et en économie. Le projet VAREG, financé par l’UE, prévoit d’étudier les problèmes à frontière libre d’un point de vue purement théorique. L’accent sera mis sur la régularité des frontières libres apparaissant dans le contexte des problèmes de minimisation variationnelle tels que les problèmes à une phase, à deux phases et les problèmes vectoriels de Bernoulli, ainsi ceux relatifs aux obstacles et aux obstacles minces. Le projet développera de nouvelles techniques pour analyser la structure fine des frontières libres, en particulier autour des singularités. De nombreux outils et méthodes développés pourront trouver une application dans d’autres problèmes et domaines, notamment les minimisations de surface, les cartes harmoniques, les problèmes de discontinuité libre et les problèmes de frontières libres paraboliques et non locales.
Objectif
The focus of this project is the regularity theory of free boundary problems. This is a fascinating topic, which combines methods from Analysis and Geometry, and has numerous applications to a large variety of problems in Physics, Engineering and Economy, which involve partial differential equations on domains whose boundary is free, that is, it is not a priori known. Typical examples are the Stefan problem, describing the evolution of a block of melting ice, and the American stock options. Since the shape of the boundary is free, it is a deep and usually extremely difficult question to study its fine structure. The regularity theory is precisely the art of deducing the local structure of the free boundary just by looking at a global energy-minimization property of the state function. In this project I aim to develop new techniques to study the regularity of the free boundaries and to give a precise description of the structure of the free boundaries around singular points. I will introduce a new variational method for the analysis of the free boundaries, aiming to solve several major open questions related to the classical one-phase, two-phase and the vectorial Bernoulli problems, the obstacle and thin-obstacle problems, which are the most important models both from a theoretical and applicative point of view. The techniques that I will develop in this project will have an impact on several domains, including the minimal surfaces, harmonic maps, free discontinuity problems, parabolic and non-local free boundary problems.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
ERC-STG - Starting Grant
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2019-STG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
56126 PISA
Italie
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.