Descripción del proyecto
Análisis a múltiples escalas de la propagación de ondas en medio aleatorios
Los medios aleatorios modifican sobremanera la propagación de ondas, lo que conlleva efectos no deseados, como la captura de ondas sísmicas, o efectos deseados, como la absorción de ondas sonoras por barreras acústicas. Estos fenómenos se conocen bastante bien desde un punto de vista físico, pero se desconocen en términos matemáticos. El objetivo del proyecto financiado con fondos europeos COR-RAND es comprender la interacción entre operadores diferenciales y aleatoriedad para explicar la rica variedad de modos de propagación de ondas. Los investigadores utilizarán ecuaciones correctoras para caracterizar las soluciones de ecuaciones diferenciales parciales con coeficientes aleatorios en múltiples escalas espaciales y temporales.
Objetivo
"Consider a partial differential equation (PDE) with random coefficients as in engineering or applied physics: When combined with a spatial scale separation, the randomness and the differential operator interact to give rise to some effective behavior. The recent growing mathematical activity in this domain has led to a ``seemingly'' complete theory of stochastic homogenization of linear elliptic operators. Central to this theory is the so-called corrector equation, a degenerate elliptic equation posed on the (infinite-dimensional) probability space. The context of linear elliptic operators yields the simplest such equation. Time-dependent and/or nonlinear PDEs also involve corrector equations (or a family thereof), albeit with a significantly more complex structure. Their study and use to characterize the large-scale/time behavior of solutions of PDEs with random coefficients are at the heart of this project. Whereas the relevance of corrector equations is clear in problems such as diffusion in random media, sedimentation of randomly placed particles in a fluid, or water waves on a rough bottom, it is less obvious for the long-time behavior of waves in disordered media. The latter is related to the spectrum of the associated random elliptic operator, the characterization of which still remains a largely open question today. We propose to relate the long-time behavior of waves to the properties of a family of corrector equations. These corrector equations are widely unstudied and offer many analytical challenges. They constitute the first half of the project. Even in the ``well-understood'' setting of linear elliptic operators, this requires to revisit the corrector equation in the light of much weaker topologies than considered before. The second half of the project aims at using correctors to establish the large-scale behavior of solutions as random objects. This may involve surprising quantities such as the recently introduced ``homogenization commutator""."
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ciencias naturalesciencias de la tierra y ciencias ambientales conexasgeologíasedimentología
- ciencias naturalesmatemáticasmatemáticas purastopología
- ciencias naturalesmatemáticasmatemáticas purasanálisis matemáticoecuaciones diferencialesecuaciones diferenciales parciales
Para utilizar esta función, debe iniciar sesión o registrarse
Programa(s)
Régimen de financiación
ERC-COG - Consolidator GrantInstitución de acogida
75006 Paris
Francia