Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Corrector equations and random operators

Description du projet

Analyse multi-échelle de la propagation des ondes dans des milieux aléatoires

Les milieux aléatoires perturbent grandement la propagation des ondes en déclenchant des effets indésirables comme le piégeage des ondes sismiques ou des effets recherchés comme le piégeage des ondes sonores par les murs antibruit. Ces phénomènes sont bien compris d’un point de vue physique, mais beaucoup moins en termes mathématiques. L’objectif du projet COR-RAND, financé par l’UE, est de comprendre l’interaction entre les opérateurs différentiels et le caractère aléatoire pour expliquer la grande variété des modes de propagation des ondes. Les chercheurs utiliseront des équations correctives pour caractériser les solutions d’équations différentielles partielles à coefficients aléatoires à des échelles temporelles et spatiales multiples.

Objectif

"Consider a partial differential equation (PDE) with random coefficients as in engineering or applied physics: When combined with a spatial scale separation, the randomness and the differential operator interact to give rise to some effective behavior. The recent growing mathematical activity in this domain has led to a ``seemingly'' complete theory of stochastic homogenization of linear elliptic operators. Central to this theory is the so-called corrector equation, a degenerate elliptic equation posed on the (infinite-dimensional) probability space. The context of linear elliptic operators yields the simplest such equation. Time-dependent and/or nonlinear PDEs also involve corrector equations (or a family thereof), albeit with a significantly more complex structure. Their study and use to characterize the large-scale/time behavior of solutions of PDEs with random coefficients are at the heart of this project. Whereas the relevance of corrector equations is clear in problems such as diffusion in random media, sedimentation of randomly placed particles in a fluid, or water waves on a rough bottom, it is less obvious for the long-time behavior of waves in disordered media. The latter is related to the spectrum of the associated random elliptic operator, the characterization of which still remains a largely open question today. We propose to relate the long-time behavior of waves to the properties of a family of corrector equations. These corrector equations are widely unstudied and offer many analytical challenges. They constitute the first half of the project. Even in the ``well-understood'' setting of linear elliptic operators, this requires to revisit the corrector equation in the light of much weaker topologies than considered before. The second half of the project aims at using correctors to establish the large-scale behavior of solutions as random objects. This may involve surprising quantities such as the recently introduced ``homogenization commutator""."

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-COG - Consolidator Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2019-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

SORBONNE UNIVERSITE
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 187 500,00
Adresse
21 RUE DE L'ECOLE DE MEDECINE
75006 PARIS
France

Voir sur la carte

Région
Ile-de-France Ile-de-France Paris
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 187 500,00

Bénéficiaires (2)

Mon livret 0 0