European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Tissue-engineering the tumour microenvironment to improve treatment of pancreatic cancer

Descrizione del progetto

Modelli in vitro di cancro pancreatico derivati dai pazienti

Il cancro pancreatico è associato a una prognosi estremamente sfavorevole e necessita pertanto dello sviluppo di nuove terapie. Ciò richiede modelli specifici per i pazienti che simulano la biologia del tumore e l’interazione tra cancro e cellule che sostengono il cancro. Per affrontare tale questione, il progetto CHIPIN, finanziato dall’UE, si propone di sviluppare modelli tumorali 3D utilizzando tecniche di ingegneria tessutale e biostampa. Le piattaforme sviluppate saranno composte da idrogel, molecole di matrice extracellulare e cellule derivate dai pazienti, ricreando le caratteristiche biomeccaniche del microambiente che caratterizza il tumore pancreatico. Questo nuovo approccio offrirà una piattaforma clinicamente rilevante per la selezione di nuove terapie.

Obiettivo

My vision is to address a clinical problem with a novel and transformative approach. Using my unique expertise in cell biology, tissue engineering and translational research I will design technology platforms to test new treatments for human pancreatic cancer.

Pancreatic tumours are cancers of unmet medical need with 85% of patients dying within 9 months of diagnosis. To find better therapies, we need patient-specific models that mimic the biology of tumour tissues and target interactions between malignant and non-malignant cells. Biomimetic tissue engineering is a powerful approach to generate 3D cancer models, however, only a few scientists use these technologies. Most 3D cultures of human cells include reconstituted matrices that originate from murine tumours containing undefined amounts of extracellular matrix and growth factors. There is no tissue-engineered 3D model that allows control over patient-specific and biomechanical characteristics of the pancreatic tumour microenvironment.

I hypothesise that 3D approaches that replicate the native tissue composition and biomechanical properties will behave like real tumours to provide clinically predictive platforms and to test novel treatments that target both malignant and non-malignant cells.

To test my hypothesis, I will:
•3D-print matrix and cellular elements of the microenvironment of human pancreatic tumours
•Develop a cancer-on-a-chip model of liver metastasis
•Compare the crosstalk of malignant and other microenvironment components with the human disease
•Validate my new platforms with treatments in clinical trials and test novel combination treatments that slow down or reduce tumour growth.

In a multidisciplinary project, I will use:
•3D printing to build platforms composed of hydrogels, fibrous scaffolds and patient-derived cells
•Extracellular matrix molecules for chemical crosslinking into hydrogels
•Cancer-on-a-chip models to study tumour metastasis
•Imaging, biomechanical and multi-omics analyses.

Meccanismo di finanziamento

ERC-COG - Consolidator Grant

Istituzione ospitante

LEIBNIZ-INSTITUT FUR POLYMERFORSCHUNG DRESDEN EV
Contribution nette de l'UE
€ 2 000 000,00
Indirizzo
HOHE STRASSE 6
01069 Dresden
Germania

Mostra sulla mappa

Regione
Sachsen Dresden Dresden, Kreisfreie Stadt
Tipo di attività
Research Organisations
Collegamenti
Costo totale
€ 2 000 000,00

Beneficiari (1)