Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

SIMULACRON: From Camera Observations to Physical Simulations of the 3D World

Descrizione del progetto

Verso un nuovo concetto di comprensione dinamica della scena nella visione artificiale

La visione artificiale si trova all’intersezione tra informatica, matematica, ingegneria e fisica. Si tratta di uno dei più potenti tipi di intelligenza artificiale, che si concentra sulla replica di parti della complessità del sistema di visione umano. Il progetto SIMULACRON, finanziato dall’UE, svilupperà un concetto più profondo di comprensione dinamica della scena nella visione artificiale. Si concentrerà sulla deduzione della fisica sottostante (masse, elasticità, momenti e forze) e sulla simulazione dell’azione osservata direttamente da video. In particolare, il progetto svilupperà algoritmi per la modellazione di forme deformabili e metodi variazionali per dedurre simulazioni fisiche da video. In ultima analisi, SIMULACRON porterà a un passaggio dalla deduzione della geometria 3D alla deduzione delle simulazioni fisiche.

Obiettivo

Despite their amazing success, we believe that computer vision algorithms have only scratched the surface in terms of understanding our world from images. While most research on 3D reconstruction has been concerned with recovering the surface geometry and reflectance, SIMULACRON is focused on inferring the underlying physics (masses, elasticity, momenta, forces, etc.) and a simulation of the observed action directly from videos.

This not only provides a more profound understanding of the observed phenomena, but it also allows us to interpolate and extrapolate complex actions far beyond the observation: The inferred physical simulation can be employed for space-time super-resolution and for predictions into the future.

SIMULACRON covers three lines of research:

A) We will develop algorithms for deformable shape modeling. We will explore suitable representations of 3D shape and its evolution that enable the efficient computation of shape deformation, correspondence, interpolation and extrapolation. These techniques will form the basis for inferring physical simulations in parts B and C.

B) We will develop variational methods for inferring physical simulations from videos. We will compute a reference shape and simulation parameters that generate the shape deformation that is most consistent with the observations.

C) We will develop learning-based approaches for inferring physical simulations from videos. We will pursue two alternative approaches: First, we will generate synthetic training data by simulating deformable shapes and the associated camera observations. Second, we will devise self-supervised techniques for learning from real data without requiring labeled training data.

By shifting from inference of 3D geometry to inference of physical simulations, SIMULACRON will give rise to a more profound notion of dynamic scene understanding in computer vision, robotics and beyond. We believe that we have the necessary competence to pursue this project.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-ADG - Advanced Grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2019-ADG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

TECHNISCHE UNIVERSITAET MUENCHEN
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 3 500 000,00
Indirizzo
Arcisstrasse 21
80333 Muenchen
Germania

Mostra sulla mappa

Regione
Bayern Oberbayern München, Kreisfreie Stadt
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 3 500 000,00

Beneficiari (1)

Il mio fascicolo 0 0