Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS

Understanding The Role of the defects to Accomplish high Performance and Stable Two Dimensional Devices

Project description

Studying implications of defect (trap) states on 2D materials

Two-dimensional (2D) materials have attracted increasing attention in the last decade. With ultrathin thickness having shown extraordinary optical, electronic and optoelectronic properties, 2D materials are used in semiconductors. Compared to traditional 3D semiconductors, they allow higher integration density. The EU-funded project TRAPS-2D will improve the performance of 2D materials through defect engineering. The aim is to resolve the low performance and to achieve a complementary-metal-oxide (CMOS) technology co-integration. TRAPS-2D will conduct a systematic study of the implications of defect (trap) states on 2D materials. The project’s findings will ultimately result in greatly improved commercial electronic applications.

Objective

Dr. Marquez proposes a new approach to improve the performance of 2D materials: the defect-engineering. This approach aims to investigate the critical issue of defects implication on the 2D semiconductors operation to solve the low performance and to accomplish a future CMOS co-integration. Electrically activated interfaces, surface and oxide states have demonstrated not only to reduce the device performance but also making the device to behave in a determine operation. Surface defect have shown metal workfunction pinning and therefore formation of Schottky barriers at the contact-semiconductor interface. In addition, depending on the energy level these defect, they can contribute like donor or acceptor dopant or like generation-recombination (trap) centers. In this regard, the fabricated devices would operate differently, presenting n-type, ambipolar or p-type behavior and accumulation or inversion operation modes. Fast operating, normally-on or normally-of devices can be addressed controlling the defect implications. The understanding and control of these defect states and impurities in 2D semiconductor systems is an essential area of research, and the first step is to develop the metrology tools to accurately quantify defect densities and distributions gaining further insight into the possible origin of the defects states. “TRAPS-2D” is a proposal to systematical study of defect (trap) states implications on 2D materials. Its novelty resides in the control of these defects to force the fabricated devices to operate in a specific mode and therefore control their performance. Additionally, the proposal holds an important technological transfer aspect considering the co-integration of these 2D materials in the standard CMOS processes to open the doors to ultimate commercial electronic applications.

Coordinator

UNIVERSIDAD DE GRANADA
Net EU contribution
€ 165 666,88
Address
CUESTA DEL HOSPICIO SN
18071 Granada
Spain

See on map

Region
Sur Andalucía Granada
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 165 666,88

Partners (1)