Descripción del proyecto
La teoría de la medida geométrica podría responder a problemas matemáticos no resueltos desde hace mucho tiempo
El objetivo del proyecto STMAGMT, financiado con fondos europeos, es sentar las bases teóricas en diferentes ámbitos de la teoría de la medida geométrica para responder preguntas fundamentales que dependen de análisis matemáticos modernos. El proyecto ampliará las técnicas de la teoría de la medida geométrica desarrolladas recientemente que abordan espacios métricos arbitrarios para resolver problemas aparentemente no relacionados en diferentes ámbitos del análisis matemático, como el cálculo de variaciones, el análisis armónico y la teoría de la función geométrica, así como la geometría diferencial. El proyecto se centrará en tres objetivos principales: la generalización de las caracterizaciones clásicas de rectificabilidad en entornos no euclidianos, la demostración de un análogo cuantitativo al teorema de proyección de Besicovitch-Federer y la resolución de la conjetura de cadena plana de Ambrosio y Kirchheim.
Objetivo
The aim of this research proposal is to develop the necessary theory of three areas of Geometric Measure Theory in order to solve several fundamental open questions. The origins of these questions can be found in recent advancements in various areas of modern analysis, such as the calculus of variations, harmonic analysis and geometric function theory, and differential geometry.
The project will use and expand upon techniques recently pioneered by the PI. These techniques demonstrated the viability of geometric measure theory in arbitrary metric spaces. One focus of this project will be to continue with the natural progression of this research. The other focus will be to developing these techniques in order to solve seemingly unrelated problems in new areas of analysis. These methods have been successfully used to solve many well known questions, but it is clear that their full potential has yet to be realised.
The main areas of interest are:
(A): Fundamental questions regarding geometric measure theory in metric spaces.
A central point of interest will be generalising classical characterisations of rectifiability to non-Euclidean settings.
(B): Characterisations of quantitative rectifiability.
The main goal is to prove a quantitative analogue to the Besicovitch--Federer projection theorem conjectured by David and Semmes.
(C): The structure of currents.
In particular, the project will follow a path towards solving the flat chain conjecture of Ambrosio--Kirchheim.
Each of these areas concerns difficult yet important problems. As with other fundamental results of GMT, it is expected that these techniques will find applications far beyond their original purpose.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
ERC-STG - Starting Grant
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2020-STG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
CV4 8UW COVENTRY
Reino Unido
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.