Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Sensors and daTA tRaininG towards high-performance Agri-food sysTEms

CORDIS fornisce collegamenti ai risultati finali pubblici e alle pubblicazioni dei progetti ORIZZONTE.

I link ai risultati e alle pubblicazioni dei progetti del 7° PQ, così come i link ad alcuni tipi di risultati specifici come dataset e software, sono recuperati dinamicamente da .OpenAIRE .

Risultati finali

Joint papers published/submitted to Q1 journals (si apre in una nuova finestra)

Joint papers published/submitted to Q1 journals. Report on the papers submitted by the partners.

Webpage with information on expertise & available technologies (si apre in una nuova finestra)

Webpage with information on expertise & available technologies.

Project Quality Handbook (si apre in una nuova finestra)

First version of the Project Quality Handbook updated regularly at every General Assembly meeting

Application to fund future training (si apre in una nuova finestra)

Application to fund future training programmes.

Evolution of the publications in high impact journals in relevant research fields (si apre in una nuova finestra)

Evolution of the publications in high impact journals in the relevant research fields

Training provided to ESRs from UCP and partners (si apre in una nuova finestra)

Report summarising training provided to ESRs from UCP and partners.

Guidelines and best practices for adoption of sensors and phenotyping (si apre in una nuova finestra)

Document on Guidelines and best practices for adoption of sensors and phenotyping

White paper on the use of sensing across the food system (si apre in una nuova finestra)

White paper on the use of sensing across the food system.

STARGATE workshops and training schools (si apre in una nuova finestra)

Report on STARGATE workshops and training schools executed submitted. This will include a report on the Mobility actions.

Plan for STARGATE training course (si apre in una nuova finestra)

Plan for STARGATE training course described in a full report.

Communication plan, toolkit and STARGATE website (si apre in una nuova finestra)

Communication plan toolkit and STARGATE website

Dissemination Plan and Stakeholder Engagement (si apre in una nuova finestra)

Stakeholder Engagement Plan including a map of stakeholders

Integration in PhD programmes (si apre in una nuova finestra)

Report on activities for the evaluation for the integration between PhD programmes of the partners.

Open Data Strategy (si apre in una nuova finestra)

Plan detailing strategy for open data and for implementation of the ODRP in STARGATE

Pubblicazioni

High-throughput plant phenotyping: a role for metabolomics? (si apre in una nuova finestra)

Autori: Robert D.Hall, John C.D’Auria, Antonio C.Silva Ferreira, YvesGibon, Dariusz Kruszka, PuneetMishra, Rickvan de Zedde
Pubblicato in: Trends in Plants Science, 2022, ISSN 1360-1385
Editore: Elsevier BV
DOI: 10.1016/j.tplants.2022.02.001

PhenoTrack3D: an automatic high-throughput phenotyping pipeline to track maize organs over time (si apre in una nuova finestra)

Autori: Benoit Daviet, Romain Fernandez, Llorenç Cabrera-Bosquet, Christophe Pradal, Christian Fournier
Pubblicato in: Plant Methods, Numero 18, 2022, ISSN 1746-4811
Editore: BioMed Central
DOI: 10.1186/s13007-022-00961-4

Implementation of theoretical non-photochemical quenching (NPQ(T)) to investigate NPQ of chickpea under drought stress with High-throughput Phenotyping (si apre in una nuova finestra)

Autori: Madita Lauterberg, Henning Tschiersch, Yusheng Zhao, Markus Kuhlmann, Ingo Mücke, Roberto Papa, Elena Bitocchi, Kerstin Neumann
Pubblicato in: Scientific Reports, Numero 14, 2024, ISSN 2045-2322
Editore: Nature Publishing Group
DOI: 10.1038/s41598-024-63372-6

Precision phenotyping across the life cycle to validate and decipher drought-adaptive QTLs of wild emmer wheat (Triticum turgidum ssp. dicoccoides) introduced into elite wheat varieties (si apre in una nuova finestra)

Autori: Madita Lauterberg, Yehoshua Saranga, Mathieu Deblieck, Christian Klukas, Tamar Krugman, Dragan Perovic, Frank Ordon, Andreas Graner, Kerstin Neumann
Pubblicato in: Frontiers in Plant Science, Numero 13, 2022, ISSN 1664-462X
Editore: Frontiers Media S. A.
DOI: 10.3389/fpls.2022.965287

Automated and non-destructive estimation of soluble solid content of tomatoes on the plant under variable light conditions (si apre in una nuova finestra)

Autori: Jos Ruizendaal, Gerrit Polder, Gert Kootstra
Pubblicato in: Biosystems Engineering, Numero 242, 2024, Pagina/e 80-90, ISSN 1537-5110
Editore: Academic Press
DOI: 10.1016/j.biosystemseng.2024.04.008

Sága, a Deep Learning Spectral Analysis Tool for Fungal Detection in Grains—A Case Study to Detect Fusarium in Winter Wheat (si apre in una nuova finestra)

Autori: Xinxin Wang, Gerrit Polder, Marlous Focker, Cheng Liu
Pubblicato in: Toxins, Numero 16, 2024, Pagina/e 354, ISSN 2072-6651
Editore: Multidisciplinary Digital Publishing Institute (MDPI)
DOI: 10.3390/toxins16080354

Engaging Precision Phenotyping to Scrutinize Vegetative Drought Tolerance and Recovery in Chickpea Plant Genetic Resources (si apre in una nuova finestra)

Autori: Madita Lauterberg, Henning Tschiersch, Roberto Papa, Elena Bitocchi, Kerstin Neumann
Pubblicato in: Plants, Numero 12, 2023, Pagina/e 2866, ISSN 2223-7747
Editore: Academic Press
DOI: 10.3390/plants12152866

QAVAN: Query-answering approach for actionable numerical relationships over Knowledge Graphs (si apre in una nuova finestra)

Autori: Felipe Vargas-Rojas, Llorenç Cabrera-Bosquet, Danai Symeonidou
Pubblicato in: Knowledge-Based Systems, Numero 284, 2024, Pagina/e 111252, ISSN 0950-7051
Editore: Elsevier BV
DOI: 10.1016/j.knosys.2023.111252

Recent developments and potential of robotics in plant eco-phenotyping (si apre in una nuova finestra)

Autori: Lili Yao, Rick van de Zedde, George Kowalchuk
Pubblicato in: Emerging Topics in Life Sciences, Numero 5, 2023, Pagina/e 289-300, ISSN 2397-8554
Editore: Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology
DOI: 10.1042/etls20200275

Autoencoder-based 3D representation learning for industrial seedling abnormality detection (si apre in una nuova finestra)

Autori: Hendrik A.C. de Villiers, Gerwoud Otten, Aneesh Chauhan, Lydia Meesters
Pubblicato in: Computers and Electronics in Agriculture, Numero 206, 2023, Pagina/e 107619, ISSN 0168-1699
Editore: Elsevier BV
DOI: 10.1016/j.compag.2023.107619

Ripening dynamics revisited: an automated method to track the development of asynchronous berries on time-lapse images (si apre in una nuova finestra)

Autori: Benoit Daviet, Christian Fournier, Llorenç Cabrera-Bosquet, Thierry Simonneau, Maxence Cafier, Charles Romieu
Pubblicato in: Plant Methods, Numero 19, 2023, ISSN 1746-4811
Editore: BioMed Central
DOI: 10.1186/s13007-023-01125-8

PhyQus: Automatic Unit Conversions for Wikidata Physical Quantities

Autori: Luis Felipe Vargas-Rojas, Axel Polleres, Llorenç Cabrera-Bosquet, Danai Symeonidou
Pubblicato in: 2023
Editore: HAL Open Science

È in corso la ricerca di dati su OpenAIRE...

Si è verificato un errore durante la ricerca dei dati su OpenAIRE

Nessun risultato disponibile

Il mio fascicolo 0 0