European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-04-30

The strongly correlated electron problem - from the hubbard model to quantum dots

Cel



This proposal is for theoretical research on the construction and solution of charge-spin models for correlated-electron systems, with application to both bulk materials (high Tc cuprates) and nanoscale structures with potential for future quantum-coherent devices.
Theoretical techniques will include a recently developed finite cluster method, degenerate per- turbation theory and quantum Monte Carlo simulations. These will be applied to the following problems. 1. Investigation of low-energy properties in the normal-state of the high Tc superconductors by approximate but accurate solutions of large clusters ( l00CuO2 'cells'). This will include the determination of correlation functions, optical conductivity and deviations from Fermi-liquid behaviour. 2. Accurate determination of effective single-band charge-spin parameters for copper-oxide planes from realistic multi-band models. This will extend earlier work and will be particularly directed towards the identification of pairing interactions.
3. Investigation of collective behaviour and critical phenomena in a quantum dot array modelled by a multi-band Hubbard Hamiltonian. 4. Detailed study of transport through a semiconducting quantum dot containing electrons at low density and in the presence of defects. This will include an investigation of persistent currents in nanoscale, two-dimensional rings.

Zaproszenie do składania wniosków

Data not available

Koordynator

KING¿S COLLEGE LONDON
Wkład UE
Brak danych
Adres
Strand
LONDON
Zjednoczone Królestwo

Zobacz na mapie

Linki
Koszt całkowity
Brak danych

Uczestnicy (1)