European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

GRAPHENE-BASED SINGLE-PHOTON NONLINEAR OPTICAL DEVICES

Article Category

Article available in the following languages:

Grafen jako superdoładowane szkło powiększające

Złożone interakcje między grafenem a światłem są obecnie znacznie lepiej rozumiane dzięki pracom przeprowadzonym w ramach projektu GRASP. Wyniki czteroletniego badania stanowią podstawę dla przyszłych technologii wykorzystujących nieliniowe efekty optyczne.

Badania podstawowe icon Badania podstawowe

Poza znaczeniem dla zrozumienia podstawowych praw fizyki, nieliniowe efekty optyczne są również kluczowe dla tak istotnych zastosowań jak obliczenia kwantowe, biomedycyna czy przełączanie optyczne. Nadal jednak istnieje wiele przeszkód utrudniających pełne wykorzystanie ich potencjału, a jedną z nich jest uzyskanie nieliniowych efektów optycznych przy ultraniskiej mocy i na urządzeniach o wielkości chipów. „To rzeczywiście jedno z największych wyzwań w dziedzinie optyki”, mówi prof. dr Darrick Chang, lider grupy ds. kwanto-nanofotoniki teoretycznej w ICFO. „Realizacja nieliniowych efektów optycznych wymaga zazwyczaj dużej intensywności lasera, a wynikający z tego pobór mocy – lub wielkość wymaganych źródeł zasilania – często sprawia, że staje się ona niepraktyczna, jak na przykład w przypadku urządzeń przenośnych”. Ostatecznym celem byłoby uzyskanie efektów nieliniowych na poziomie pojedynczych kwantowych cząstek światła, a osiągnięcie tego celu jest warte świeczki. Umożliwiłoby to w szczególności uzyskanie najlepszej możliwej wydajności oraz szerokie zastosowanie klasycznych urządzeń nieliniowych, ułatwiając jednocześnie otrzymanie zakłócających kwantowych protokołów informacyjnych, które nie mogą być realizowane na klasycznych platformach. Właśnie z takimi założeniami w 2014 r. rozpoczęto projekt GRASP. „Celem projektu było zbadanie, czy stosunkowo nowy i egzotyczny materiał, jakim jest grafen, może pozwolić na wzajemne oddziaływanie impulsów światła o znacznie mniejszej mocy”, wyjaśnia. Wykorzystanie grafenu jest zasadniczo nowością w optyce nieliniowej, ale prof. dr Chang i jego zespół uznali, że wyjątkowe właściwości materiału pozwolą nawet pojedynczym cząsteczkom światła osiągnąć wymaganą intensywność umożliwiającą uruchamianie procesów nieliniowych. „Jedną z unikalnych właściwości grafenu, która została zarówno teoretycznie przewidziana, jak i eksperymentalnie zaobserwowana, jest to, że może on skutecznie ogniskować lub przestrzennie ograniczać światło do skal o bardzo małej długości. Moglibyśmy tu użyć analogii do szkła powiększającego, które umożliwia skupienie światła słonecznego w małej plamce, co sprawia, że jest ono wystarczająco intensywne, by spalić kawałek papieru”, wyjaśnia prof. dr Chang. W ramach tej analogii grafen można by uznać za superdoładowane szkło powiększające. Może wcisnąć światło w przestrzeń milion razy mniejszą niż najlepsze okulary powiększające czy soczewki, a wynikająca z tego intensywność byłaby na tyle wysoka, że wyzwalałaby nieliniowe procesy optyczne. W ramach projektu GRASP po raz pierwszy można było zaobserwować nieliniowe efekty wynikające z tego efektu szkła powiększania. Jest to szczególnie niezwykłe, biorąc pod uwagę fakt, że grafen ma grubość zaledwie jednego atomu, podczas gdy standardowe nieliniowe urządzenia optyczne są wykonane z materiałów o dużych rozmiarach. Chociaż do osiągnięcia ostatecznego celu, jakim jest opracowanie całkowicie nowej generacji technologii opartej na nieliniowych urządzeniach optycznych, które mogą pracować z bardzo niską mocą, jest jeszcze dość daleko, prace konsorcjum stanowią znaczący krok w tym kierunku. „Oczywiście, aby grafen stał się dojrzałą technologią optyki nieliniowej, potrzeba o wiele więcej pracy. Stworzyliśmy jednak wiele ważnych elementów, które stanowią podstawę do dalszych badań. Chodzi tu m.in. o możliwość uzyskania nieliniowych efektów optycznych w grafenie w wyniku silnego ograniczenia światła, nauczenie się wytwarzania grafenu przy użyciu materiałów o wyższej jakości, konstruowanie nowych urządzeń, które mogą ograniczyć pole widzenia nie miliony, ale miliardy razy lepiej niż najlepsze obiektywy, a także lepsze zrozumienie złożonych interakcji między grafenem a światłem”, mówi prof. dr Chang. Chociaż pewnie jest jeszcze za wcześnie, aby spekulować na temat konkretnych kierunków komercjalizacji, wykorzystanie grafenu w szeroko stosowanych klasycznych i nieliniowych technologiach optycznych w skali chipów jest obecnie o wiele bardziej prawdopodobne. To tłumaczy, dlaczego prof. dr Chang zamierza kontynuować te prace: „Po przygotowaniu ważnych wymaganych elementów naszym celem jest kontynuacja tej ekscytującej linii badań i rozpoczęcie łączenia tych elementów oraz realizacji podstawowych, ale prawdziwych urządzeń w nadchodzących latach”.

Słowa kluczowe

GRASP, grafen, światło, optyka, nieliniowe efekty optyczne, technologia kwantowa

Znajdź inne artykuły w tej samej dziedzinie zastosowania