Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Zawartość zarchiwizowana w dniu 2024-06-16

Polymer-based nanoplasmonic components and devices

Cel

This project is aimed to develop a novel concept for micro- and nano-scale dynamic and active photonic components based on metal/polymer structures. The innovation lies in utilizing unique properties of metallic systems that allow optical and electric signals to be transmitted along the same metallic circuitry. This approach will provide a route to novel integrated micro-optical devices and components combining photonics and electronics on the same chip.

The target is to establish a new technological platform and create the technology for the integratable nanophotonic components with enhanced functionality for optical signal processing, on-electronic-chip optical interconnects and optical broadband applications. We plan to achieve this on a single material system using polymer-based guides on a metal surface to confine and manipulate surface plasmon waves on a subwavelength scale. The passive, dynamic and active photonic devices will be fabricated and their performance characterized and tested. Examples of electrically controlled nanophotonic devices (wavelength selective components, integrated power monitors and variable optical attenuators) will be demonstrated.

The proposed technology has a unique potential using its intrinsic capability of carrying an optical information as well as control electronic and/or optical signals in the same circuitry without a need of separate electronic and optical circuits. PLASMOCOM will create new critical knowledge on fabrication and performance of dynamic and active nanophotonic devices, demonstrate new devices with enhanced parameters (low fabrication cost, smaller size, enhanced dynamic and active functionality with lower electric consumption power and low intensity of control light, convergence of electronic and photonic circuitry), and will contribute to Europe's competitiveness and leadership in miniaturization of photonic components and integrated photonic circuits in order to establish it as a world market leader.

Słowa kluczowe

Zaproszenie do składania wniosków

Data not available

Koordynator

THE QUEENS UNIVERSITY OF BELFAST
Wkład UE
Brak danych
Adres
UNIVERSITY ROAD
BELFAST
Zjednoczone Królestwo

Zobacz na mapie

Koszt całkowity
Brak danych

Uczestnicy (6)