Descrizione del progetto
Definizione di metriche canoniche in collettori di grandi dimensioni
La geometria differenziale complessa è un importante campo della matematica che si trova all’intersezione tra geometria differenziale e algebrica. Gli oggetti elementari sono i collettori (spazi che, a livello locale, assomigliano allo spazio piano) e i fasci vettoriali su di essi (una raccolta di spazi vettoriali parametrizzati da un collettore). Il campo riguarda per lo più la definizione di nozioni ottimali di distanza, le cosiddette metriche canoniche. A questo proposito, è fondamentale determinare se un dato spazio abbia o meno una metrica canonica. Finanziato dal programma di azioni Marie Skłodowska-Curie, il progetto CanMetCplxGeom si propone di costruire metriche canoniche per collettori complessi, fasci vettoriali olomorfi e famiglie di tali oggetti.
Obiettivo
This proposal is in the area of complex differential geometry, a prominent field of mathematics. It stands at the intersection of differential and algebraic geometry. The basic objects are manifolds, spaces that locally look like flat space, and vector bundles over them - a collection of vector spaces parametrised by a manifold. In complex differential geometry one seeks optimal notions of distance, so-called canonical metrics. In higher dimensions, canonical metrics may or may not exist. The key question is to determine whether or not a given space has a canonical metric, a very challenging problem. The Yau-Tian-Donaldson conjecture stands at the heart of this problem, and relates the existence of a solution to algebro-geometric notions of stability.
The aim of this research proposal is to give several new constructions of canonical metrics for complex manifolds, holomorphic vector bundles and families of such objects. It also seeks to show connections of the existence of these metrics, a solution to a PDE, with purely algebraic notions, for an equation for families of canonical metrics. This will be approached mainly with techniques from perturbative and variational PDE theory and algebraic geometry, but will also use some computational methods and probability theory. The proposal seeks to develop new techniques for well studied equations, and to apply more well known techniques to new equations, to advance the constructions and the theory of canonical metrics in a major way.
The action would give a unique opportunity for a reciprocal transfer of knowledge as part of a prominent research group in the field, whose research focus and strengths differ from that of the ER. It would provide the ER with the independence needed to form his own research group in the future, and expand the ER's academic network through new connections. Though currently working in Europe, the ER was previously in North America. The fellowship would allow the ER to remain within the EU.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali matematica matematica pura geometria
- scienze naturali matematica matematica pura analisi matematica equazioni differenziali equazioni differenziali parziali
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) H2020-MSCA-IF-2020
Vedi tutti i progetti finanziati nell’ambito del bandoCoordinatore
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
405 30 Goeteborg
Svezia
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.