Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Efficient and functional optical frequency conversion in 3D Nonlinear Optical Artificial Materials

Opis projektu

Sztuczne materiały optyczne inspirowane metapowierzchniami do optycznej konwersji częstotliwości

Nieliniowa optyczna konwersja częstotliwości, czyli zamiana światła wejściowego na światło o innych częstotliwościach z wykorzystaniem nieliniowości optycznych, umożliwia generowanie światła w całym spektrum elektromagnetycznym. Takie rozwiązanie okazuje się nieodzowne w wielu obszarach zastosowań. Technologia ta opiera się jednak na masowych kryształach nieliniowych, co utrudnia miniaturyzację i integrację w coraz bardziej kompaktowych i energooszczędnych urządzeniach przyszłości. Inspirując się niedawno opracowanymi nieliniowymi metapowierzchniami, w ramach finansowanego przez UE projektu 3D NOAM badacze opracują nowy rodzaj trójwymiarowego, nanoinżynieryjnego nieliniowego materiału optycznego. Zespół opracuje również wymaganą technologię nanofabrykacji, która pozwoli na zwiększanie skali i komercjalizację materiału.

Cel

Optical frequency conversion in bulk nonlinear crystals is used for generation of coherent light over the entire optical regime from extreme ultra-violet up to THz waves. This remarkable ability is at the core of a plethora of important technological and scientific applications. However, bulk nonlinear crystals pose strong limitations on integration, miniaturization, and control over the nonlinear interactions, holding back the further progress of optical frequency conversion technologies.
I propose to lead a great breakthrough in the field by developing a new kind of 3D nano-engineered nonlinear optical artificial materials with superior nonlinear optical properties, and free of the limitations of bulk nonlinear crystals. These materials will be inspired by recently developed nonlinear metasurfaces. It was demonstrated that nonlinear metasurfaces exhibit unprecedented nonlinear functionalities, and effective nonlinearities exceeding by far those of bulk nonlinear crystals, promising to replace bulk crystals in future nonlinear optical technologies. However, their two-dimensional designs and nanoscale thickness strongly limit their frequency conversion efficiency, with no existing practical nanofabrication approach nor theoretical proposition to overcome this limitation. Our research aims to close this gap. We will develop a new nanofabrication methodology that will allow to stack hundreds of nonlinear metasurfaces into a 3D nonlinear material in a technologically viable way. We will study new fundamental nonlinear interactions in these novel nonlinear materials, and demonstrate experimentally their superiority over bulk nonlinear crystals in conversion efficiency and functionalities. These achievements will potentially pave the way to the next era of nonlinear optical frequency conversion technologies. They will also immediately impact applications of 3D nanostructured optical materials in general, as well as may change the way we think about 3D nanofabrication.

Instytucja przyjmująca

TEL AVIV UNIVERSITY
Wkład UE netto
€ 3 000 000,00
Koszt całkowity
€ 3 000 000,00

Beneficjenci (1)