Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Enzymatic cascade biotransformations in digitally manufactured continuous-flow bioreactors

Projektbeschreibung

Mit 3D-Druck die Kosten für die Herstellung von Biokatalysatoren senken

Biokatalysatoren können die Herstellung von komplexeren Arzneimitteln ermöglichen, sind derzeit allerdings teuer und zeitaufwändig in der Anwendung. Das im Rahmen der Marie-Skłodowska-Curie-Maßnahmen finanzierte Projekt FlowBioCat wird die derzeitigen Beschränkungen für die chemische Entwicklung von Biokatalysatoren überwinden, indem es 3D-gedruckte Reaktoren entwickelt, die die Durchmischung bei niedrigen Durchflussraten verbessern. Anstatt in Festbettreaktoren immobilisiert zu werden, kommen bei diesem Projekt maßgeschneiderte Oberflächenmodifizierungsverfahren mit ionischen Flüssigkeiten zum Einsatz. Diese Änderung wird für stabile Biokatalysatorpräparate mit mehr aktiven Stellen sorgen und die Produktivität erhöhen. Dieser Durchbruch in der Bioverfahrenstechnik birgt das Potenzial, die Kosten und die Abfallerzeugung bei der Arzneimittelherstellung zu verringern und gleichzeitig das Angebot und die Effizienz zu steigern.

Ziel

Within Industrial Biotechnology, applied biocatalysis is poised to transform drug discovery and development by pharmaceutical industry. Enzymes as catalysts, allow for synthetic chemists to generate molecular complexity avoiding costly and time-consuming protection and deprotection steps. However, the high cost associated to their use, especially if a co-factor is required, the low substrate tolerance and productivity and the difficulties for scale-up, strongly limit the industrial uptake of these processes. The combination of enzyme immobilisation and continuous flow (CF), offers an opportunity to overcome these limitations. Enzymatic performance and recyclability can be dramatically improved by immobilisation and generic problems such as low productivity and substrate inhibition effect can be solved using CF. During the last years, enzymes have been most commonly immobilised in packed bed reactors. However, the very low flow rates required to achieve full conversion, decrease the mixing and make the system look closer to a batch reaction (with its generic problems). Here we aim to address these limitations through the design and manufacture of 3D Printed (3DP) reactors that combine optimised mixing at low flow rates, with tailored surface modification techniques with ionic liquids (ILs) for stable biocatalyst preparation and higher number of active sites. 3DP facilitates the generation of complex geometries in a variety of materials based on ILs, tailored to optimise enzyme stability. The aim of this proposal is to integrate chemical engineering (3DP continuous flow reactors) and biocatalysis (stable and recyclable immobilised enzymes) to develop more efficient biotransformations in flow, easy and effective immobilisation of enzymes and significantly promote sustainable development of IB. It will have a direct impact in the EU from an environmental, economic and social perspective, lowering drug prices, facilitating distributed production and reducing waste.

Koordinator

UNIVERSITAT JAUME I DE CASTELLON
Netto-EU-Beitrag
€ 165 312,96
Adresse
AVENIDA VICENT SOS BAYNAT S/N
12006 Castellon De La Plana
Spanien

Auf der Karte ansehen

Region
Este Comunitat Valenciana Castellón/Castelló
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
Keine Daten