Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

From reconstructions of neuronal circuits to anatomically realistic artificial neural networks

Opis projektu

Sieci neuronowe pomogą sztucznej inteligencji

Sztuczne sieci neuronowe (ang. artificial neural network, ANN) oferują wspaniałe możliwości rozwoju dla wielu branż i usług, krajów oraz organizacji, od ulepszonej automatyzacji po łatwość użytkowania i większą wydajność. Jednak ANN wymagają kompleksowego szkolenia i dużych ilości danych, aby można było wykonać nawet najprostsze funkcje. Z kolei biologiczne sieci neuronowe rozwinęły się w mózgu, aby sprawnie wykonywać wysoce złożone funkcje. W związku z tym zespół finansowanego ze środków ERBN projektu ConnectomesToANNs opracuje kilka narzędzi obliczeniowych na potrzeby wychwycenia podstawowych zasad biologicznych z rekonstrukcji sieci neuronowych w mózgu w projektowaniu ANN. Takie „biologiczne” ANN poprawią wydajność aplikacji opartych na sztucznej inteligencji, jednocześnie ograniczając wymagania dotyczące treningu i danych.

Cel

Artificial neural networks (ANNs) have found applications in a wide variety of real-world problems. Despite this tremendous success, artificial intelligence systems still face major challenges due to their reliance on extensive training and large datasets. Recent reports indicate that the architecture of ANNs could be a prime target for reducing their training and data requirements.

We hypothesize that such architectural features can be identified from neuronal networks in the brain, which have evolved to efficiently perform highly specialized functions. Recent advances in electron microscopy will soon provide detailed reconstructions of large-scale neuronal networks from different brain areas, species, developmental stages and/or pathological conditions. However, even if such data become available, directly transforming neuronal network reconstructions into ANNs will raise problems of interpretability, due to their enormous complexity, and generalizability, due to high inter-individual variability.

Here, we will resolve these challenges by implementing a set of computational approaches that allow the extraction of rules that explain the wiring properties underlying dense connectomics data, the transfer of these anatomical principles into the design of ANN architectures, and the evaluation of how these principles impact performance on a battery of deep learning tasks. This unique methodology will lay the foundation for groundbreaking insights into how different network architectures facilitate specific brain functions, and also how the underlying anatomical principles can inform the development of more effective and efficient artificial intelligence systems.

Our methodology will be publicly accessible online to scientists, but also to companies and non-profit organizations that seek to improve the performance or reduce training data requirements for applications of deep learning.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2022-POC1

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 150 000,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0