European Commission logo
English English
CORDIS - EU research results
CORDIS

SOLID-STATE LITHIUM METAL BATTERY WITH IN SITU HYBRID ELECTROLYTE

Project description

Driving a new generation of lithium batteries

Electric vehicles are powered by batteries, which are the most important part. But the demand for electric vehicles is increasing so fast that it will soon outpace battery cell production. The EU-funded SEATBELT project will help to pave the road towards a cost-effective, robust all-solid-state lithium battery comprising sustainable materials by 2026. Specifically, it will achieve the first technological milestone of developing a battery cell that meets the needs of the electric vehicle industry. The low cost cell will be safe by design with sustainable and recyclable materials, reaching high energy densities and long cyclability in line with the 2030 EU targets. The project will be the start point of the first EU all solid-state battery value chain.

Objective

As of 2025, new generations of Li batteries based on silicon/carbon (Gen. 4a) and Li metal (Gen. 4b) anode, where flammable liquid electrolyte is replaced by a non-flammable solid-one, will take over the current Li-ion device. However, only all-solid-state Gen. 4b Li batteries are expected to fulfil the needed cell gravimetric energy density specifications demanded by electromobility and stationary applications. Therefore, SEATBELT ambition is to generate a local EU industry that revolves around a cost-effective, robust all-solid-state Li battery comprising sustainable materials by 2026. SEATBELT intends to achieve the first technological milestone of developing a battery cell (TRL5) meeting the needs of Electric Vehicle (EV) and stationary industry. The low-cost SEATBELT cell is safe-by-design with sustainable and recyclable materials, reaching high energy densities (>380 Wh/kg) and long cyclability (>500 cycles) by 2026 in line with the 2030 EU targets. The cells are produced by low-cost solvent-free extrusion process comprising a combination of innovative materials: thin Li metal, hybrid electrolyte, a safe cathode active material without critical materials and thin Al current collector. The cell design being optimized by interface (operando and atomistic modelling) and process (machine learning) methodologies. In addition, new in situ imaging instrumentation will be developed to investigate safety properties and mechanical deformation to assess cell safety in real conditions. An innovative recycling cycle from materials to cell level will be also established. Thus, SEATBELT will be the start point of a first EU all-solid-state battery value chain, whose main players in RTD and Industry sectors are within the consortium. So, cells and modules will cycle using industrially relevant protocols dedicated to EV and stationary applications. SEATBELT consortium is composed of 14 beneficiary partners and 3 affiliated entities, and one associated partner, from 7 European countries with an overall budget of 7851448.50€.

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution
€ 1 394 786,25
Address
RUE MICHEL ANGE 3
75794 Paris
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Research Organisations
Links
Total cost
€ 1 616 146,25

Participants (21)

Partners (1)