Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

AI-based CCAM: Trustworthy, Explainable, and Accountable

CORDIS oferuje możliwość skorzystania z odnośników do publicznie dostępnych publikacji i rezultatów projektów realizowanych w ramach programów ramowych HORYZONT.

Odnośniki do rezultatów i publikacji związanych z poszczególnymi projektami 7PR, a także odnośniki do niektórych konkretnych kategorii wyników, takich jak zbiory danych i oprogramowanie, są dynamicznie pobierane z systemu OpenAIRE .

Rezultaty

Methodology for explainable, trustworthy and human centric AI based system and function development

[T1.1-3] This deliverable will materialize the AITHENA methodology into a reference report to include definition of KPI related to trusted AI features (see GO-8).

Report on initial AI algorithm development

[T3.2-5] This report covers the initial AI algorithm developments including their initial feature validation according to the specified requirements and specifications.

Report on initial use case evaluation

[T5.2-4] This report covers the initial demonstrator validation and evaluation of the demonstrators against the specified requirements and specifications.

Privacy-preserving methods

[T2.3] This deliverable will report the designed privacy-preserving methods for application of GDPR-compliant ML.

Life-cycle management framework for ML models

[T3.1] This report covers the designed AI-framework used for the development and life-cycle assessment of individual ML algorithms.

User group needs report and technical use case definition

[T1.4] This deliverable reports the action taken to identify user groups and gather from them requirements to detail the AITHENA use cases

Initial communication, dissemination and standardisation plan

T613 Initial strategy for AITHENA based on an initial market and stakeholder analysis

Testing and evaluation methodology for AI-driven CCAM systems

[T5.1] This report outlines a joint testing and evaluation methodology for AI-driven CCAM systems to be applied in the corresponding use cases of task 5.2 to task 5.4.

Updated communication, dissemination and standardisation plan

Update of the communication, dissemination and standardisation plan

Publikacje

Runtime Safety Assurance of Autonomous Vehicles

Autorzy: A. Forrai (Siemens Industry Software Netherlands B.V.), V. Neelgundmath, K.K. Unni, I. Barosan (Eindhoven University of Technology)
Opublikowane w: Proceedings: 2023 7th International Conference on System Reliability and Safety (ICSRS), 2023, ISSN 1272-4017
Wydawca: Zenodo
DOI: 10.5281/zenodo.12724017

Digital twin for synthetic data generation – application for automated driving systems

Autorzy: Hassan Hotait (HAN – University of Applied Sciences), Alexandru Forrai (Siemens Industry Software Netherlands B.V.)
Opublikowane w: Product solutions paper: 22nd Driving Simulation & Virtual Reality Conference, 2023, ISSN 1272-3883
Wydawca: Zenodo
DOI: 10.5281/zenodo.12723882

An Evaluation of Time-triggered Scheduling in the Linux Kernel

Autorzy: Paraskevas Karachatzis, Jan Ruh, Silviu S. Craciunas (TTTech Computertechnik AG, Vienna, Austria)
Opublikowane w: RTNS '23: Proceedings of the 31st International Conference on Real-Time Networks and Systems, 2023, ISBN 9781450399838
Wydawca: ACM
DOI: 10.1145/3575757.3593660

Explainable Multi-Camera 3D Object Detection with Transformer-Based Saliency Maps

Autorzy: Beemelmanns, Till; Zahr, Wassim; Eckstein, Lutz
Opublikowane w: Machine Learning for Autonomous Driving Workshop 2023 (NeurIPS), 2023, ISSN 2331-8422
Wydawca: ML4AD/arXiv
DOI: 10.48550/arxiv.2312.14606

Trustworthiness Assurance Assessment for High-Risk AI-Based Systems

Autorzy: Georg Stettinger (Infineon Technologies AG); Patrick Weissensteiner (Virtual Vehicle Research GmbH); Siddartha Khastgir (International Manufacturing Centre, The University of Warwick)
Opublikowane w: IEEE Access, Numer Volume: 12, 2024, ISSN 2169-3536
Wydawca: IEEE
DOI: 10.1109/ACCESS.2024.3364387

WebLabel: OpenLABEL-compliant multi-sensor labelling

Autorzy: Itziar Urbieta, Andoni Mujika, Gonzalo Piérola, Eider Irigoyen, Marcos Nieto, Estibaliz Loyo, Naiara Aginako
Opublikowane w: Multimedia Tools and Applications, Numer Volume 83, 2023, ISSN 2213-7793
Wydawca: Springer
DOI: 10.1007/s11042-023-16664-4

Wyszukiwanie danych OpenAIRE...

Podczas wyszukiwania danych OpenAIRE wystąpił błąd

Brak wyników