Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Explainable and Robust Automatic Fact Checking

Opis projektu

Automatyczne określanie faktów i fałszu

Coraz większy zasięg internetu oraz mediów, a także najnowsze wydarzenia sprawiają, że coraz częściej stajemy przed koniecznością szybkiej i łatwej weryfikacji informacji, które widzimy w sieci. Problem stanowi jednak ogromna ilość danych, która powoduje, że nawet mechanizmy weryfikacji oparte na algorytmach uczenia maszynowego mają trudności z efektywnym działaniem lub wyjaśnieniem procesu weryfikacji. Nad rozwiązaniem tego problemu pracuje zespół finansowanego przez Europejską Radę ds. Badań Naukowych projektu ExplainYourself, który dąży do opracowania wytłumaczalnego mechanizmu weryfikacji faktów. Ze względu na to, że istniejące metody automatycznego sprawdzania faktów często wykorzystują nieprzejrzyste głębokie sieci neuronowe, badacze skupiają się przede wszystkim na wyjaśnialności działania algorytmu weryfikującego, rozwiązując tym samym problem istniejących podejść, które nie są w stanie tworzyć zróżnicowanych wyjaśnień, dostosowanych do użytkowników o różnych poziomach zapotrzebowania na informacje.

Cel

ExplainYourself proposes to study explainable automatic fact checking, the task of automatically predicting the veracity of textual claims using machine learning (ML) methods, while also producing explanations about how the model arrived at the prediction. Automatic fact checking methods often use opaque deep neural network models, whose inner workings cannot easily be explained. Especially for complex tasks such as automatic fact checking, this hinders greater adoption, as it is unclear to users when the models' predictions can be trusted. Existing explainable ML methods partly overcome this by reducing the task of explanation generation to highlighting the right rationale. While a good first step, this does not fully explain how a ML model arrived at a prediction. For knowledge intensive natural language understanding (NLU) tasks such as fact checking, a ML model needs to learn complex relationships between the claim, multiple evidence documents, and common sense knowledge in addition to retrieving the right evidence. There is currently no explainability method that aims to illuminate this highly complex process. In addition, existing approaches are unable to produce diverse explanations, geared towards users with different information needs.
ExplainYourself radically departs from existing work in proposing methods for explainable fact checking that more accurately reflect how fact checking models make decisions, and are useful to diverse groups of end users. It is expected that these innovations will apply to explanation generation for other knowledge-intensive NLU tasks, such as question answering or entity linking. To achieve this, ExplainYourself builds on my pioneering work on explainable fact checking as well as my interdisciplinary expertise.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja tego projektu została potwierdzona przez zespół projektowy.

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-ERC - HORIZON ERC Grants

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2022-STG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

KOBENHAVNS UNIVERSITET
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 1 498 616,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 1 498 616,00

Beneficjenci (1)

Moja broszura 0 0