Descrizione del progetto
Osservare più da vicino la teoria delle passeggiate casuali
In matematica, una passeggiata casuale rappresenta un processo che descrive un percorso contornato da una serie di passi casuali. Il progetto BoundaryTheory, finanziato dall’UE, migliorerà la propria comprensione delle proprietà di gruppo attraverso la teoria delle passeggiate casuali. Il progetto farà luce inoltre sulle connessioni tra questa teoria e il fenomeno della rigidità. I principali campi matematici di questo programma di ricerca sono azioni di gruppi misurabili e topologici (teoria ergodica e dinamiche topologiche) e le loro interazioni con C*-algebre e algebre di von Neumann. Il progetto si baserà anche sulla teoria del gruppo di automorfismi delle catene di Markov. Realizzerà nuove tecniche per studiare il limite di Furstenberg-Poisson e le sue relazioni con le algebre degli operatori.
Obiettivo
The general goal of the proposed research is to gain a deeper understanding of group properties which are reflected by the theory of random walks. Another goal is to reveal further connections between this theory with the rigidity phenomenon. The main mathematical fields appearing in this research plan are measurable and topological group actions (Ergodic Theory and Topological Dynamics), and group actions on C*-algebras.
One of the main objectives is developing a theory towards solving a specific case of Connes’ Rigidity Conjecture, formulated for C*-algebras. Namely, differentiating reduced C*-algebras of irreducible lattices of different ranks. The suggested approach is inspired by a well-known rigidity result of Furstenberg. This involves studying the relationship between measurable and topological boundaries, as well as their C*- and von Neumann algebraic counterparts. Related to this relationship, it is also conjectured that the existence of uniquely ergodic models for probability measure preserving actions in a much wider setup than is currently known.
Another goal is to develop a theory of automorphism groups of Markov chains. Two potential applications are discussed: the first is developing new techniques for realizing the Furstenberg-Poisson boundary, and the second, is to relate the boundaries of groups, which are measure equivalent.
An additional line of research suggests new systematic studies of operator algebras related to groups. This direction is inspired by the fruitful theme in Geometric Group Theory, studying the space of all subgroups, of a given group. The dynamics on the space of subalgebras is suggested to provide a new set of invariants attributed to groups, unitary representations, and group actions. A subalgebra rigidity phenomenon is conjectured to hold for higher rank groups, and a strategy based on Boundary Theory is being presented. This direction opens many new horizons to the study of groups’ operator algebras.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Programma(i)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Argomento(i)
Invito a presentare proposte
(si apre in una nuova finestra) ERC-2022-STG
Vedi altri progetti per questo bandoMeccanismo di finanziamento
HORIZON-ERC -Istituzione ospitante
84105 Beer Sheva
Israele