Opis projektu
Bliższe spojrzenie na teorię błądzenia losowego
W matematyce błądzenie losowe to proces opisujący ścieżkę obejmującą serię losowych kroków. Finansowany przez UE projekt BoundaryTheory pozwoli na dokładniejsze zrozumienie właściwości grup przy użyciu teorii błądzenia losowego. Projekt naświetli również powiązania między tą teorią a zjawiskiem sztywności. Głównymi dziedzinami matematycznymi w tym planie badawczym są mierzalne i topologiczne działania grupowe (teoria ergodyczności i dynamika topologiczna) oraz ich interakcje z algebrami typu C* i algebrami von Neumanna. Zespół projektu opracuje również teorię grup automorficznych łańcuchów Markowa. To pozwoli na stworzenie nowych technik badania brzegu Furstenberga-Poissona i jego powiązań z algebrami operatorów.
Cel
The general goal of the proposed research is to gain a deeper understanding of group properties which are reflected by the theory of random walks. Another goal is to reveal further connections between this theory with the rigidity phenomenon. The main mathematical fields appearing in this research plan are measurable and topological group actions (Ergodic Theory and Topological Dynamics), and group actions on C*-algebras.
One of the main objectives is developing a theory towards solving a specific case of Connes’ Rigidity Conjecture, formulated for C*-algebras. Namely, differentiating reduced C*-algebras of irreducible lattices of different ranks. The suggested approach is inspired by a well-known rigidity result of Furstenberg. This involves studying the relationship between measurable and topological boundaries, as well as their C*- and von Neumann algebraic counterparts. Related to this relationship, it is also conjectured that the existence of uniquely ergodic models for probability measure preserving actions in a much wider setup than is currently known.
Another goal is to develop a theory of automorphism groups of Markov chains. Two potential applications are discussed: the first is developing new techniques for realizing the Furstenberg-Poisson boundary, and the second, is to relate the boundaries of groups, which are measure equivalent.
An additional line of research suggests new systematic studies of operator algebras related to groups. This direction is inspired by the fruitful theme in Geometric Group Theory, studying the space of all subgroups, of a given group. The dynamics on the space of subalgebras is suggested to provide a new set of invariants attributed to groups, unitary representations, and group actions. A subalgebra rigidity phenomenon is conjectured to hold for higher rank groups, and a strategy based on Boundary Theory is being presented. This direction opens many new horizons to the study of groups’ operator algebras.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
HORIZON.1.1 - European Research Council (ERC)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
HORIZON-ERC - HORIZON ERC Grants
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) ERC-2022-STG
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaInstytucja przyjmująca
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
84105 Beer Sheva
Izrael
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.