Opis projektu
Badanie złożonych zjawisk nieliniowych w naukach społecznych
W badaniach przekrojowych zmienne takie jak skłonność do udostępniania fałszywych wiadomości są ściśle powiązane z ludzką percepcją i tworzą skomplikowane wzorce, które wymykają się liniowym analizom. Kwestię tę dodatkowo komplikują badania podłużne, analizujące niestacjonarny charakter czasowych procesów społecznych. Konwencjonalne metody nie pozwalają na uchwycenie tej złożoności. Aby rozwiązać ten problem, pi finansowany przez ERBN projekt NONLINEARSCIENCE zakłada wykorzystanie bayesowskich procesów gaussowskich. Zespół proponuje elastyczne metodologie nieparametryczne, umożliwiające uchwycenie złożonych nieliniowych kształtów, integrację wcześniejszej wiedzy i testowanie teorii. Nowe, łatwe w użyciu oprogramowanie umożliwi udostępnienie rozwiązania szerokiemu gronu odbiorców, którzy z pewnością docenią także rozszerzenia oferujące obsługę różnych typów danych. Projekt NONLINEARSCIENCE pozwoli naukowcom na badanie skomplikowanych mechanizmów nieliniowych, śledzenie ewolucji czasowej i dokonywanie dokładnych prognoz w dynamicznym krajobrazie nauk społecznych.
Cel
Nonlinearity is ubiquitous in the social sciences. In cross-sectional research, nonlinearity naturally follows from the fact that variables often depend on human perception. The tendency to share fake news, for example, depends in a complex nonlinear manner on peoples’ personality and political preferences. In longitudinal research, nonlinearity follows from the fact that temporal social processes are nonstationary by nature. For instance, stressful life events (e.g. unemployment, pandemic) have a complex nonlinear impact on well-being over time. To study these nonlinear phenomena, much more data are needed than in linear analyses. Therefore, researchers increasingly rely on technological innovations to collect rich data, such as panel data via online surveys, experience sampling data via mobile apps, or temporal social network data using digital communication (e.g. email). In addition, prior information (e.g. from experts) is often available to inform us about plausible nonlinear shapes. A crucial problem is however that statistical approaches for learning nonlinearity still heavily rely on old-fashioned techniques which can only model simple (curvilinear) effects and are unable to include external prior information. Our understanding about nonlinear phenomena therefore remains limited. This project aims to resolve these shortcomings by developing cutting-edge methods for nonlinear social science using Bayesian Gaussian processes. With this nonparametric methodology, we can learn complex nonlinear shapes, add prior knowledge, and test nonlinear theories. Implementation in user-friendly software will ensure general utilization. Tailor-made extensions will be developed for cross-sectional data, panel data, experience sampling data, and temporal social network data. After this project, we will be able to truly understand complex nonlinear mechanisms, to learn how these unfold over time, and to make accurate predictions (e.g. of well-being after life events).
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja tego projektu została potwierdzona przez zespół projektowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja tego projektu została potwierdzona przez zespół projektowy.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
HORIZON.1.1 - European Research Council (ERC)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
HORIZON-ERC - HORIZON ERC Grants
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) ERC-2022-COG
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaInstytucja przyjmująca
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
5037 AB Tilburg
Niderlandy
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.