Descrizione del progetto
Come il cervello risolve il problema del legame in ambienti complessi con fonti molteplici
Quando ci orientiamo in un mercato affollato, il cervello elabora la miriade di immagini e suoni affrontando il problema della «inferenza causale» o del «legame», determinando quali segnali derivano da fonti comuni e integrando esclusivamente questi. Tuttavia, nel mondo reale è difficile risolvere questo compito computazionale complesso in modo ottimale. Il progetto MakingSense, finanziato dal CER, coniuga metodi comportamentali e computazionali con la neuroimmaginografia per scoprire come il cervello risolve il problema dell’inferenza causale in ambienti sempre più realistici. Questo progetto muove dall’ipotesi che il cervello calcoli soluzioni approssimative selezionando in sequenza i segnali da integrare con la percezione, in base alle richieste derivati dal compito in questione, alle nostre esperienze passate e alle nostre aspettative. La ricerca innovativa di MakingSense può modificare radicalmente le conoscenze attuali sulla percezione umana, ispirare nuovi algoritmi di intelligenza artificiale e offrire approfondimenti sulle sfide percettive affrontate da diverse popolazioni cliniche.
Obiettivo
To interact effectively with the complex dynamic and multisensory world (e.g. traffic) the brain needs to transform the barrage of signals into a coherent percept. This requires it to solve the causal inference or binding problem - deciding which signals come from common sources and integrating those accordingly. Doing so exactly (i.e. optimally) is wildly computationally intractable for all but the simplest laboratory scenes. It is unknown how the brain computes approximate solutions for realistic scenes in the face of resource constraints.
This ambitious interdisciplinary project combines statistical, computational, behavioural and neuroimaging (3/7T-fMRI, MEG/EEG, TMS) methods to determine how, and how well, the brain solves the causal inference problem in progressively richer multisensory environments.
The key hypothesis is that observers compute approximate solutions by sequentially selecting subsets of signals for perceptual integration via attentional and active sensing mechanisms guided by the perceptual tasks they are executing, their prior expectations about the world’s causal structure, and bottom-up salience maps. I will build parallel normative/approximate Bayesian and transformer network models of these processes and combine those with behaviour and neuroimaging to unravel the neurocomputational mechanisms.
The project will develop a novel computational and neuromechanistic account of causal inference in more realistic multisensory scenes, addressing fundamental questions about binding, inference and probabilistic computations. By bringing lab research closer to the real world it will radically alter our perspectives - shifting from near-optimal passive perception in simple scenes to active information gathering in the service of approximate solutions in more realistic scenes. It has the potential to inspire new AI algorithms and drive transformative insights into the perceptual difficulties older and clinical populations face in the real-world.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
HORIZON.1.1 - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
HORIZON-ERC - HORIZON ERC Grants
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2022-ADG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
6525 XZ Nijmegen
Paesi Bassi
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.