Projektbeschreibung
Sicherheitsnachweise und modernste Kryptosysteme
Die herkömmliche Kryptographie ist durch Quantenfortschritte existenziell bedroht, da weit verbreitete Systeme durch große Quantencomputer angreifbar sind. Post-Quanten-Sicherheitslösungen sind zwar vielversprechend, werden aber nicht gründlich genug geprüft. Algebraische Gruppen, ein Eckpfeiler der modernen Mathematik, bergen ungenutztes Potenzial für die Bewältigung der Herausforderungen, die sich durch neue kryptografische Methoden wie gitterbasierte und isogeniebasierte Kryptografie ergeben. Vor diesem Hintergrund beleuchtet das Team des vom Europäischen Forschungsrat finanzierten Projekts AGATHA CRYPTY die symbiotische Beziehung zwischen algebraischen Gruppen und post-Quanten-kryptografischen Problemen. Es will durch die Nutzung dieser Verbindung kryptoanalytische Durchbrüche erzielen, robuste Sicherheitsnachweise liefern und bahnbrechende Kryptosysteme entwickeln, die die Widerstandsfähigkeit von Informationssystemen im Quantenzeitalter gewährleisten.
Ziel
Contemporary public-key cryptography builds its foundations on a handful of computational problems rooted in arithmetic and geometry. The vast majority of deployed cryptosystems rely on two classical problems (computing discrete logarithms, and factoring integers) that would not resist a large-scale quantum computer. Research on quantum technology is accelerating, endangering the world's information systems. New foundations are being proposed by the cryptologic community, promising post-quantum security, but suffering in many aspects from the lack of adequate scrutiny.
Emerging post-quantum candidates can be naturally embedded into rich and modern mathematical theories. It is the case of lattice-based and isogeny-based cryptography, which share surprising connections once recast in the world of algebraic groups. Algebraic groups are at the forefront of modern mathematics. Their study across the past century has blossomed with the development of powerful theories, such as representation theory and automorphic forms. Yet, the dialogue between arithmeticians and cryptologists has been sparse, and the link between algebraic groups and the objects of post-quantum cryptography has been mostly anecdotal.
This project brings this connection to the forefront, observing that the theory of algebraic groups shines a powerful light on problems raised by lattice-based and isogeny-based cryptography. It has the unique ability to turn the set of all instances of a computational problem into one meaningful object in itself — a 'moduli space' — with an arithmetic structure, a geometry, a topology, a harmonic theory. Exposing these problems to the powerful artillery of modern arithmetic will lead to cryptanalytic breakthroughs, security proofs, and the construction of cutting-edge cryptosystems.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Das Projektteam hat die Klassifizierung dieses Projekts bestätigt.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Das Projektteam hat die Klassifizierung dieses Projekts bestätigt.
- Naturwissenschaften Informatik und Informationswissenschaften Computersicherheit Kryptografie
- Naturwissenschaften Mathematik reine Mathematik Arithmetik
- Technik und Technologie Elektrotechnik, Elektronik, Informationstechnik Elektrotechnik Hardware Quantencomputer
- Naturwissenschaften Mathematik reine Mathematik Geometrie
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
HORIZON.1.1 - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
HORIZON-ERC - HORIZON ERC Grants
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2023-STG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
75794 PARIS
Frankreich
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.