Projektbeschreibung
Die Komplexität bei der Berechnung von Polynomen überwinden
Die Komplexität der Berechnung und Bearbeitung von Polynomen steht im Mittelpunkt einiger der größten Herausforderungen der theoretischen Informatik. Fragen wie die Bestimmung des Gesamtgewichts perfekter Paare in einem Graphen, die Entwicklung effizienter deterministischer Algorithmen oder das Verständnis der Komplexität von Annäherungen werfen ein Schlaglicht auf grundlegende Fragen, die von algebraischer Komplexität über geometrische Komplexitätstheorie bis hin zu Quanteninformation reichen. Ziel des ERC-finanzierten Projekts EACTP ist es in diesem Zusammenhang, diese Herausforderungen zu bewältigen, indem Methoden zur Lösung von Fragen wie Polynom-Identitätstests, den symbolischen Rang von Matrizen und den Tensor-Unterrang in Quantenzuständen weiterentwickelt werden. Aufbauend auf den jüngsten Durchbrüchen in der algebraischen Berechnung lautet das Ziel, transformative Lösungen für diese Herausforderungen bereitzustellen und den Weg für bedeutende Fortschritte in der Informatik und Mathematik zu ebnen.
Ziel
This research proposal will address fundamental problems concerning the complexity of computing
and manipulating polynomials. For example, consider the following questions:
1. What is the complexity of computing the total weight of perfect matchings of a weighted graph?
2. Is there an efficient deterministic parallel algorithm that determines whether a graph has a perfect matching?
3. Is approximation much easier than exact computation?
4. How many EPR pairs can we distill from a given quantum state?
These seemingly unrelated questions represent some of the most important and challenging open problems in theoretical computer science: the first is the algebraic analog of the famous P vs. NP problem. The second question amounts to asking whether a symbolic matrix associated with the graph has full rank. Parallel randomized algorithms for computing this rank are known, but not deterministic ones. This is an instance of the polynomial identity testing (PIT) problem, the most fundamental algebraic derandomization problem. The third question asks about the relation between a complexity class and its closure, which lies at the heart of the Geometric Complexity Theory (GCT) program. The last question concerns the subrank of a tensor representing the given quantum state. Problems related to rank of tensors are at the heart of both algebraic complexity and quantum information theory.
Recent years have seen tremendous advance in our understanding of algebraic computations with new lower bounds, new PIT algorithms and with increasing connections to other branches of computer science and mathematics discovered. Results proved by the PI play an important role in all of these advances.
This project aims to study these and related problems and to develop new methods for solving them. Making progress on any of these problems will constitute a significant breakthrough.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Das Projektteam hat die Klassifizierung dieses Projekts bestätigt.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Das Projektteam hat die Klassifizierung dieses Projekts bestätigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
HORIZON.1.1 - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
HORIZON-ERC - HORIZON ERC Grants
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2023-ADG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
69978 Tel Aviv
Israel
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.