Opis projektu
Postępy w astrofizyce gwiazd neutronowych i astronomii fal grawitacyjnych
Odkrycie łączącej się podwójnej gwiazdy neutronowej GW170817 w 2017 roku stanowiło kamień milowy w astronomii. Obserwacja ta dokonana zarówno przez instrumenty elektromagnetyczne, jak i te mierzące fale grawitacyjne, dostarczyła nowych spostrzeżeń naukowych i przyciągnęła uwagę opinii publicznej. Pojawienie się astronomii fal grawitacyjnych wprowadziło nowy wymiar obserwacji, a przyszłe interferometry opierają się na skrupulatnych wyborach projektowych, zaawansowanej analizie danych i odpornych modelach fizycznych. Realizowany przy wsparciu programu działania „Maria Skłodowska-Curie” projekt DynTideEOS ma na celu zidentyfikowanie pierwotnych modów w falach grawitacyjnych spowodowanych pływem dynamicznym. Pozwoli to uzyskać cenne więzy dla równania stanu materii jądrowej i umożliwi pionierskie badania nad najnowocześniejszym modelem fal grawitacyjnych. Projekt przyczyni się do rozwoju astrofizyki gwiazd neutronowych i astronomii fal grawitacyjnych, jednocześnie zapewniając wgląd w fizykę jądrową.
Cel
The discovery of a merging binary neutron star in 2017, GW170817, marked an historic moment in the field of astronomy. This ground-breaking observation, witnessed by both electromagnetic- and gravitational-wave instruments, unveiled a wealth of scientific insights while capturing worldwide public attention.
Neutron stars, with their extraordinarily dense interiors, are Nature's laboratory for dense nuclear matter, about which very little is currently known. While in the past, electromagnetic observatories have been the primary sources of neutron-star observations, the emergence of gravitational-wave astronomy, epitomised by GW170817, has introduced a novel dimension to the observational effort. The forthcoming generation of gravitational-wave interferometers will possess even greater sensitivities, but their scientific impact will rely on meticulous design choices, along with the development of advanced data-analysis methods and robust physical models. This proposal, DynTideEOS, will address these critical needs and contribute to the science capability of these instruments at a critical time for design decisions.
DynTideEOS considers the dynamical tide, which drives the oscillation modes of the neutron star when the binary is closely separated. This project will identify the dominant modes in the gravitational wave, extract valuable constraints on the nuclear-matter equation of state and pioneer a state-of-the-art gravitational-waveform model for the dynamical tide.
Dr Fabian Gittins, with his outstanding background in theoretical astrophysics, joins forces with Prof Chris van den Broeck, a world-leading expert in gravitational-wave observations at Utrecht University. DynTideEOS not only promises original contributions to neutron-star astrophysics and gravitational-wave astronomy, while setting the stage for rich insights into nuclear physics, but will also underscore Dr Gittins's research excellence with a strengthened connection to observational physics.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Słowa kluczowe
Program(-y)
- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA) Main Programme
Zaproszenie do składania wniosków
Zobacz inne projekty w ramach tego zaproszeniaSystem finansowania
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European FellowshipsKoordynator
3584 CS Utrecht
Niderlandy