Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Prediction + Optimisation for scheduling and rostering with CMPpy

Descrizione del progetto

Creare un ponte tra apprendimento automatico e ottimizzazione

Organizzazioni di diversi settori industriali devono affrontare la sfida di programmare in modo efficiente i loro processi produttivi e di organizzare in modo ottimale la propria forza lavoro. Un’ulteriore sfida è rappresentata dall’incertezza in merito a fattori quali le fluttuazioni della domanda e la variabilità dei costi, che possono essere stimati con l’apprendimento automatico; tuttavia, in tal ambito risulta complesso conseguire un’integrazione efficace tra apprendimento, previsioni e programmazione. Di conseguenza, risulta necessario un quadro di riferimento per la risoluzione di problemi di previsione e ottimizzazione che fonda gli strumenti di apprendimento automatico e di ottimizzazione combinatoria. Nel progetto Conversational Human-Aware Technology for Optimisation, svolto nell’ambito della sovvenzione di consolidamento del CER, si è iniziato a costruire una biblioteca di questo tipo, chiamata CPMpy. Questa progetto incentrato su una prova di concetto aumenterà il livello di maturità tecnologica di CPMpy al fine di dimostrarne il potenziale e allinearla alle esigenze del settore.

Obiettivo

In today’s world, organizations across various industries face the challenge of efficiently scheduling their production processes and rostering their workforce optimally. However, despite consistent improvements in combinatorial optimization software for scheduling and rostering, the complexity of this task continues to grow due to uncertainty about multiple factors such as employee availability, demand fluctuations, supplier variability, variable prices, the impact of weather and the increasing need for energy efficiency. Machine learning can be used to make estimates about these uncertain factors, but the real challenge is in integrating predictions and the optimization of scheduling and rostering problems. Or more precisely *that predictions and optimization over these predictions need to be developed and evaluated together*.

While many combinatorial optimisation solvers for solving scheduling and rostering exists, including Constraint Programming and Mixed Integer Programming solvers; few of these solvers can be easily integrated with machine learning libraries. Futhermore, in a machine learning pipeline, the requirements for the solver change. What is needed is a framework for solving prediction + optimization problems that bridges the machine learning and combinatorial optimization solving tools. It should allow actors to discover what a data-driven approach can signifigy to their scheduling and rostering problem, by allowing them to easily experiment and prototype, both on the learning side, the solving side and the combination of the two.

In my ERC Consolidator project 'Conversational Human-Aware Technology for Optimisation', we started building such a library: CPMpy. We notice an increasing industrial interest in solving Prediction + Optimisation problems, but a lack of unified tools to do so. This proposal sets out to increase the Technological Readiness Level of CPMpy from TRL 4 to 6; and to demonstrate its potential and align it with industry needs.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
La classificazione di questo progetto è stata convalidata dal team del progetto.

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2023-POC

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

KATHOLIEKE UNIVERSITEIT LEUVEN
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 150 000,00
Indirizzo
OUDE MARKT 13
3000 Leuven
Belgio

Mostra sulla mappa

Regione
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0