Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Offshore Freshened Groundwater Prospecting using Machine Learning

Opis projektu

Mapowanie złóż wody pod dnem morskim

Słodkawe morskie wody podziemne, znajdujące się pod dnem morskim i cechujące się niższym zasoleniem niż woda morska, mają potencjał jako zasoby wód przybrzeżnych. Jednak niewystarczające dane na temat rozmieszczenia tych złóż utrudniają ich skuteczne wykorzystanie na potrzeby zmniejszenia deficytu wody na obszarach przybrzeżnych. W tym kontekście zespół finansowanego przez Unię Europejską projektu OPTIMAL chce umożliwić przewidywanie występowania i rozmieszczenia morskich wód podziemnych na całym świecie. Metodologia użyta w projekcie łączy symulację numeryczną i uczenie maszynowe, wykorzystując czynniki geologiczne i geomorfologiczne. Realizowany przez Uniwersytet Maltański, wespół z Uniwersytetem w Utrechcie i instytutem badawczym Deltares, projekt ten ma na celu rozwój wiedzy naukowej w duchu zgodności z celami zrównoważonego rozwoju. W ten sposób projekt ułatwia transfer wiedzy, jednocześnie poszerzając wiedzę specjalistyczną w zakresie geologii morskiej i stosowanego uczenia maszynowego. Dzięki walidacji danych w warunkach rzeczywistych inicjatywa OPTIMAL stanowi znaczący krok w kierunku zrównoważonego zarządzania zasobami wodnymi.

Cel

Offshore freshened groundwater (OFG) refers to fluids stored in sediment pores and rock fractures below the seafloor, with a salinity lower than seawater. This phenomenon has been identified globally in continental margins and proposed as a resource that can potentially alleviate water stress in coastal regions. However, the scarcity of data to constrain the distribution and volumes of the reservoirs remains a challenge. OPTIMAL project aims to: (i) develop an interdisciplinary methodology to predict the occurrence and distribution of OFG resources built on Artificial Intelligence and (ii) apply the model globally to infer OFG occurrence and quantify the resource feasibility as a function of distribution characteristics such as offshore extent, depth below the seafloor and fresh to brackish water ratio. The proposed methodology uses a surrogate model to create a dataset of input parameters, representing key geological and geomorphological components influencing OFG systems, such as aquitard thickness and seafloor bathymetry. The output data will be generated via numerical simulation of variable-density groundwater transport on the suite of surrogate models using high-performance computing. These data will be used to train and test machine learning algorithms. The successful models will be validated using real-world data from the existing global OFG database. The predictive model proposed in this fellowship contributes to achieving Sustainable Development Goals related to technologies for improving access to water resources. The primary beneficiary of this funding will be the University of Malta. Partner organizations will be Utrecht University and Deltares in The Netherlands. The action presents a unique opportunity for the fellow to transfer his expertise in stochastic reservoir modelling and characterization of OFG systems to the host, while learning about marine geology, seafloor landforms and applied machine learning.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) HORIZON-WIDERA-2022-TALENTS-04

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

UNIVERSITA TA MALTA
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 161 411,52
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Partnerzy (2)

Moja broszura 0 0