Opis projektu
Sztuczna inteligencja bada przyczyny pożarów lasów
Zrozumienie przyczyn odpowiadających za rosnącą liczbę pożarów lasów ma zasadnicze znaczenie dla skutecznego zarządzania ryzykiem w poszczególnych regionach. Choć rozwój monitorowania satelitarnego zapewnia dostęp do dokładnych map pożarów, nie sposób odkryć za ich pomocą czynników wpływających na powstawanie pożarów, w wyniku czego nie ma możliwości wykorzystania danych. Zespół finansowanego ze środków działania „Maria Skłodowska-Curie” projektu ForestFireAI wykorzysta dane z obserwacji Ziemi pochodzące z wielu źródeł i dostępne w wielu skalach czasowych w celu opracowania algorytmów sztucznej inteligencji umożliwiających szacowanie przyczyn pożarów lasów. Pozwoli to na stworzenie wzorcowego zbioru danych dotyczących czynników odpowiadających za wybuchy pożarów lasów w Europie, który posłuży jako podstawa do oceny algorytmów. Zespół zwiększy rozdzielczość przestrzenną i dokładność czasową danych dzięki technikom sztucznej inteligencji, jednocześnie ustanawiając skuteczne metody wskazywania istotnych czynników, takich jak działalność człowieka, wysokie temperatury, dostępność paliwa i suchość.
Cel
With the increasing frequency and intensity of forest fires, it is essential to better understand the drivers causing them. Identifying forest fire drivers offer valuable insights that can enhance our comprehension of forest fire variability and guide targeted regional risk management strategies. Recent advancements in satellite remote sensing and machine learning data processing techniques have significantly improved fire monitoring. However, while these efforts have resulted in accurate fire maps, they do not provide information about the underlying causes. Consequently, the full potential of Earth Observation data, along with advanced data processing and modelling techniques for studying the forest fire drivers, remains largely unexplored. The ForestFireAI project aims to leverage the availability of multi-source and multi-temporal Earth Observation data to propose new AI algorithms for estimating forest fire drivers. This includes creating a benchmark dataset of forest fire drivers in Europe, which will serve as a ground truth data for evaluating developed advanced AI algorithms. Moreover, the project will focus on developing AI techniques to improve the spatial resolution of data, use multi-source data and their temporal resolution, and establish efficient processing schemes for detecting forest fire drivers, such as human activities, high temperature, fuel, and dryness. To ensure the reliability, efficiency, and scalability of the developed algorithms, uncertainty-aware, explainable, and hybrid physical/data-driven techniques will be incorporated. Through this multidisciplinary approach—bringing together expertise in remote sensing, computer science, and forest ecology—ForestFireAI will take important steps toward developing the algorithms necessary for better understanding forest fire drivers. This knowledge could contribute in reducing the risk of extreme forest fires and will accelerate the advancement of Dr Benyamin Hosseiny’s research.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- inżynieria i technologia przemysł maszynowy inżynieria pojazdów inżynieria lotnicza i kosmiczna technika satelitarna
- nauki przyrodnicze nauki biologiczne ekologia
- inżynieria i technologia inżynieria śodowiska energetyka i paliwa
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) HORIZON-MSCA-2024-PF-01
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaKoordynator
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
EX4 4QJ Exeter
Zjednoczone Królestwo
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.