Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

ForestFireAI: Large-scale Prediction of Forest Fire Drivers from Space Using Multi-source Remote Sensing Data and Artificial Intelligence Techniques

Opis projektu

Sztuczna inteligencja bada przyczyny pożarów lasów

Zrozumienie przyczyn odpowiadających za rosnącą liczbę pożarów lasów ma zasadnicze znaczenie dla skutecznego zarządzania ryzykiem w poszczególnych regionach. Choć rozwój monitorowania satelitarnego zapewnia dostęp do dokładnych map pożarów, nie sposób odkryć za ich pomocą czynników wpływających na powstawanie pożarów, w wyniku czego nie ma możliwości wykorzystania danych. Zespół finansowanego ze środków działania „Maria Skłodowska-Curie” projektu ForestFireAI wykorzysta dane z obserwacji Ziemi pochodzące z wielu źródeł i dostępne w wielu skalach czasowych w celu opracowania algorytmów sztucznej inteligencji umożliwiających szacowanie przyczyn pożarów lasów. Pozwoli to na stworzenie wzorcowego zbioru danych dotyczących czynników odpowiadających za wybuchy pożarów lasów w Europie, który posłuży jako podstawa do oceny algorytmów. Zespół zwiększy rozdzielczość przestrzenną i dokładność czasową danych dzięki technikom sztucznej inteligencji, jednocześnie ustanawiając skuteczne metody wskazywania istotnych czynników, takich jak działalność człowieka, wysokie temperatury, dostępność paliwa i suchość.

Cel

With the increasing frequency and intensity of forest fires, it is essential to better understand the drivers causing them. Identifying forest fire drivers offer valuable insights that can enhance our comprehension of forest fire variability and guide targeted regional risk management strategies. Recent advancements in satellite remote sensing and machine learning data processing techniques have significantly improved fire monitoring. However, while these efforts have resulted in accurate fire maps, they do not provide information about the underlying causes. Consequently, the full potential of Earth Observation data, along with advanced data processing and modelling techniques for studying the forest fire drivers, remains largely unexplored. The ForestFireAI project aims to leverage the availability of multi-source and multi-temporal Earth Observation data to propose new AI algorithms for estimating forest fire drivers. This includes creating a benchmark dataset of forest fire drivers in Europe, which will serve as a ground truth data for evaluating developed advanced AI algorithms. Moreover, the project will focus on developing AI techniques to improve the spatial resolution of data, use multi-source data and their temporal resolution, and establish efficient processing schemes for detecting forest fire drivers, such as human activities, high temperature, fuel, and dryness. To ensure the reliability, efficiency, and scalability of the developed algorithms, uncertainty-aware, explainable, and hybrid physical/data-driven techniques will be incorporated. Through this multidisciplinary approach—bringing together expertise in remote sensing, computer science, and forest ecology—ForestFireAI will take important steps toward developing the algorithms necessary for better understanding forest fire drivers. This knowledge could contribute in reducing the risk of extreme forest fires and will accelerate the advancement of Dr Benyamin Hosseiny’s research.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) HORIZON-MSCA-2024-PF-01

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

THE UNIVERSITY OF EXETER
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 260 347,92
Adres
THE QUEEN'S DRIVE NORTHCOTE HOUSE
EX4 4QJ Exeter
Zjednoczone Królestwo

Zobacz na mapie

Region
South West (England) Devon Devon CC
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0