Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-05-30

Gaps between primes and almost primes. Patterns in primes and almost primes. Approximations to the twin prime and Goldbach conjectures

Obiettivo

The twin prime conjecture, that n and n+2 are infinitely often primes simultaneously, is probably the oldest unsolved problem in mathematics. De Polignac (1849) conjectured that for every even value of h, n and n+h are infinitely often primes simultaneously. These are the most basic problems on gaps and patterns in primes. Another one is the conjecture of Waring (1770), stating that there are arbitrarily long arithmetic progressions (AP) of primes. For the newest developments we cite Granville (Bull. AMS 43 (2006), p.93): ): Despite much research of excellent quality, there have been few breakthroughs on the most natural questions about the distribution of prime numbers in the last few decades. That situation has recently changed dramatically with two extraordinary breakthroughs, each on questions that the experts had held out little hope for in the foreseeable future. Green and Tao proved that there are infinitely many k-term arithmetic progressions of primes using methods that are mostly far removed from mainstream analytic number theory. Indeed, their work centers around a brilliant development of recent results in ergodic theory and harmonic analysis. Their proof is finished, in a natural way, by an adaptation of the proof of the other fantastic new result in this area, Goldston, Pintz and Yildirim s proof that there are small gaps between primes. The proposal's aim is to study these types of patterns in primes with possible combination of the two theories. We quote 3 of the main problems, the first one being the most important. 1) Bounded Gap Conjecture. Are there infinitely many bounded gaps between primes? 2) Suppose that primes have a level of distribution larger than 1/2. Does a fixed h exists such that for every k there is a k-term AP of generalised twin prime pairs (p, p+h)? 3) Erdôs' conjecture for k=3. Suppose A is a sequence of natural numbers, such that the sum of their reciprocals is unbounded. Does A contain infinitely many 3-term AP's?

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2008-AdG
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-AG - ERC Advanced Grant

Istituzione ospitante

HUN-REN RENYI ALFRED MATEMATIKAI KUTATOINTEZET
Contributo UE
€ 1 376 400,00
Indirizzo
REALTANODA STREET 13-15
1053 Budapest
Ungheria

Mostra sulla mappa

Regione
Közép-Magyarország Budapest Budapest
Tipo di attività
Other
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0