Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Robust Robot Locomotion and Movements Through Morphology and Morphosis

Descrizione del progetto


Embodied Intelligence

Locomorph's goal is to push beyond the state of the art in robotic locomotion and movements, by increasing efficiency, robustness, and thus usability in unknown environments. As robotic research and industry are competing to increase robots' usability towards the highly-in-demand service robotics, advancements in robotic locomotion today would give Europe a significant competitive advantage. Locomorph combines multidisciplinary approaches from biology, biomechanics, neuroscience, robotics, and embodied intelligence to investigate locomotion and movements in animals and robots, focusing on two concepts: morphology and morphosis. We will build many diverse robots using heterogeneous modules to explore various morphological factors (shape, materials, sensors, compliance, etc) and sensory-motor control strategies, in order to generate novel and optimal robotic designs which exploit the physical dynamics emerging from the interaction among the physical morphology, control, and environment. The second concept, morphosis (changing of morphology), extends this concept further. Voluntary morphosis is a valuable skill for robots, as it can increase their adaptivity to current tasks/environments. We will adopt two complementary approaches. We will conduct animal/human experiments to study biological strategies in dealing with voluntary/involuntary morphosis. We will extract insights from the results to develop strategies for effective robotic morphosis and motor control solutions for dealing with morphosis. This, combined with the robot's modularity, will create highly robust robots, able to deal with body changes e.g. limb loss. Through an exploration of morphology and morphosis, we aim to develop robots with increased maneuverability, self-stabilization, energy efficiency, and adaptivity to unknown environments. These advances will bring us closer to service robotics, as a large part of these robots must able to locomote safely, regardless of surfaces, layouts, or terrains.

Invito a presentare proposte

FP7-ICT-2007-3
Vedi altri progetti per questo bando

Meccanismo di finanziamento

CP - Collaborative project (generic)

Coordinatore

UNIVERSITAT ZURICH
Contributo UE
€ 599 131,00
Indirizzo
RAMISTRASSE 71
8006 Zurich
Svizzera

Mostra sulla mappa

Regione
Schweiz/Suisse/Svizzera Zürich Zürich
Tipo di attività
Higher or Secondary Education Establishments
Contatto amministrativo
Helmut Hauser (Dr.)
Collegamenti
Costo totale
Nessun dato

Partecipanti (6)