European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Mesoscopic Junctions for Light Energy Harvesting and Conversion

Cel

Research will focus on the generation of electric power by mesoscopic solar cells, a domain where the PI has an outstanding track record and leadership on the global scale. The target is to increase the photovoltaic conversion efficiency from currently 11 to over 15 percent rendering these new solar cells very attractive for applications in large areas of photovoltaic electricity production. The approach to reach this challenging target is highly creative and has a strongly interdisciplinary character. Successful implementation of the project goals is assured by the vast experience and know how of the PI and his team in the key areas of the project. The project is divided in four work packages. The first three introduce creative new concepts to enhance substantially the performance of single-junction dye sensitized nanocrystalline devices, while the fourth addresses multi-junction cells and photon up-conversion systems. The tasks to be accomplished comprise 1) The theoretically assisted conception and synthesis of new molecular sensitizers to extend the spectral response of dye sensitized photovoltaic cells into the near IR up to 900 nm, increasing substantially the short circuit photocurrent of the solar cell. 2) The implementation of highly innovative mesoscopic oxides structures to support the molecular dye or quantum dot and collect the photo-generated charge carriers. 3) The introduction of smart amphiphilic molecular insulators and ultra-thin ceramic barriers at the mesoscopic junction in order to retard the interfacial electron-hole recombination and 4) The exploration of radically new cell embodiments based on multi-junction tandem cells and photon up-conversion schemes, whose solar to electric power conversion efficiency can be raised beyond the Shockley-Queiser limit of 32 percent.

Zaproszenie do składania wniosków

ERC-2009-AdG
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

ERC-AG - ERC Advanced Grant

Instytucja przyjmująca

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Wkład UE
€ 2 046 000,00
Adres
BATIMENT CE 3316 STATION 1
1015 Lausanne
Szwajcaria

Zobacz na mapie

Region
Schweiz/Suisse/Svizzera Région lémanique Vaud
Rodzaj działalności
Higher or Secondary Education Establishments
Kierownik naukowy
Michael Grätzel (Prof.)
Kontakt administracyjny
Caroline Vandevyver (Ms.)
Linki
Koszt całkowity
Brak danych

Beneficjenci (1)