Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

"PLEASE: Projections, Learning, and Sparsity for Efficient data-processing"

Cel

"Sparse models are at the core of many research domains where the large amount and high-dimensionality of digital data requires concise data descriptions for efficient information processing. A flagship application of sparsity is compressed sensing, which exploits sparsity for data acquisition using limited resources. Besides sparsity, a key pillar of compressed sensing is the use of random low-dimensional projections.
The standard principle of general sparse and redundant representations is to rely on overcomplete dictionaries of prototype signals called atoms. The foundational vision of this proposal is that the efficient deployment of sparse models for large-scale data is only possible if supported by a new generation of efficient sparse models, beyond dictionaries, which must encompass computational efficiency as well as the ability to provide sparse and structured data representations.
Further, I believe that the true impact of compressed sensing has been to unearth an extremely powerful yet counter-intuitive tool: random projections, which open new avenues in machine learning. I envision applications to data sizes and volumes of collections that cannot be handled by today’s technologies.
A particular challenge is to adapt the models to the data by learning from a training corpus. In line with the frontier research on sparse decomposition algorithms, I will focus on obtaining provably good, yet computationally efficient algorithms for learning sparse models from collections of training data, with a geometric insight on the reasons for their success.
My research program is expected to impact the whole data processing chain, from the analog level (data acquisition) to high level processing (mining, searching), where sparsity has been identified as a key factor to address the “curse of dimensionality”. Moreover, the theoretical and algorithmic framework I will develop will be directly applied to targeted audiovisual and biomedical applications."

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2011-StG_20101014
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-SG - ERC Starting Grant

Instytucja przyjmująca

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE
Wkład UE
€ 1 493 536,80
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0