Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Guiding Light through Disorder in Adaptive Photonic Resonator Arrays

Obiettivo

Planar photonic crystals are dielectric nanostructures that are pursued worldwide as a platform for integrated nanophotonic circuits. Such circuits will process signals coded in light and will consist of thousands of basic components such as resonant nanocavities. At present, unavoidable nanometer-scale disorder makes such large-scale integration impossible. Disorder causes the resonances of the nanocavities to shift randomly, resulting in Anderson localization, an interference effect that blocks the propagation of light. Anderson localization – predicted in 1958 by Nobel Prize winner Philip Anderson – is an intriguing scientific phenomenon as well as a serious threat to applications.

I propose to create adaptive nanophotonic systems. In these systems, I will use a spatially modulated light beam to modify the resonance frequency of each individual nanocavity. After adaptive tuning, the spatially structured light exactly counteracts the disorder and guides signals safely through the nanophotonic circuit. Effectively the signals will propagate in a perfect nanophotonic structure. As a second main innovation, I will employ an ultrafast structured light beam to write new, ordered and functional patterns into the circuit. This transformational technology will enable applications wherein optical circuits become fully programmable. The circuit will be modified dynamically in less time than that needed for a photon to pass through it. Spatial light modulators will enable us to address and control thousands of individual nanophotonic components.

Our dynamic and adaptive nanophotonic system will enable new technology, such as dynamically tunable delay lines, and open up new regimes of light propagation: the crossover regime of Anderson localization, ultraslow light that propagates scarcely faster than sound, and dynamic light propagation where the time dependence of the nanostructure drastically influences the flow of light.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2011-StG_20101014
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SG - ERC Starting Grant

Istituzione ospitante

UNIVERSITEIT UTRECHT
Contributo UE
€ 295 836,00
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (3)

Il mio fascicolo 0 0