Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Limit Groups over Partially Commutative Groups

Obiettivo

Klein proposed Group Theory as a means of formulating and understanding geometrical constructions. Geometric Group Theory embraces this approach and also reverses it by using geometrical ideas to give new insights into central problems in Group Theory. In the last decades, it has become a nexus between several branches of mathematics such as Geometry, Model Theory, Dynamical Systems and Algebraic Geometry over Groups.

One of the most representative exponents of this interdisciplinary connection is the theory of limit groups. This theory played a crucial role in the recent solution of the famous Tarski problems and revealed a beautiful and deep relation with the theories of JSJ decompositions and very small actions on real trees.

As the geometry of free groups is associated to trees, the geometry of partially commutative groups is associated to higher-dimensional analogues of trees. Partially commutative groups are not simply generalisations of free groups, they appear naturally in many different branches of mathematics as well as in computer science, robotics and theoretical physics. This project aims at developing a theory of limit groups over partially commutative groups from algebraic, geometric, algorithmic and model theoretic viewpoints. It intends to explore and strengthen the interconnection between the aforementioned branches of mathematics and to open up directions for further research in each of them.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP7-PEOPLE-2011-IIF
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MC-IIF - International Incoming Fellowships (IIF)

Coordinatore

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Contributo UE
€ 200 371,80
Indirizzo
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Regno Unito

Mostra sulla mappa

Regione
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0