Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Large-scale Adaptive Sensing, Learning and Decision Making: Theory and Applications

Cel

We address one of the fundamental challenges of our time: Acting effectively while facing a deluge of data. Massive volumes of data are generated from corporate and public sources every second, in social, scientific and commercial applications. In addition, more and more low level sensor devices are becoming available and accessible, potentially to the benefit of myriads of applications. However, access to the data is limited, due to computational, bandwidth, power and other limitations. Crucially, simply gathering data is not enough: we need to make decisions based on the information we obtain. Thus, one of the key problems is: How can we obtain most decision-relevant information at minimum cost?

Most existing techniques are either heuristics with no guarantees, or do not scale to large problems. We recently showed that many information gathering problems satisfy submodularity, an intuitive diminishing returns condition. Its exploitation allowed us to develop algorithms with strong guarantees and empirical performance. However, existing algorithms are limited: they cannot cope with dynamic phenomena that change over time, are inherently centralized and thus do not scale with modern, distributed computing paradigms. Perhaps most crucially, they have been designed with the focus of gathering data, but not for making decisions based on this data.

We seek to substantially advance large-scale adaptive decision making under partial observability, by grounding it in the novel computational framework of adaptive submodular optimization. We will develop fundamentally new scalable techniques bridging statistical learning, combinatorial optimization, probabilistic inference and decision theory to overcome the limitations of existing methods. In addition to developing novel theory and algorithms, we will demonstrate the performance of our methods on challenging real world interdisciplinary problems in community sensing, information retrieval and computational sustainability.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2012-StG_20111012
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-SG - ERC Starting Grant

Instytucja przyjmująca

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Wkład UE
€ 1 499 900,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0