Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Life Long Learning for Visual Scene Understanding (L3ViSU)

Obiettivo

"My goal in the project is to develop and analyze algorithms that use continuous, open-ended machine learning from visual input data (images and videos) in order to interpret visual scenes on a level comparable to humans.

L3ViSU is based on the hypothesis that we can only significantly improve the state of the art in computer vision algorithms by giving them access to background and contextual knowledge about the visual world, and that the most feasible way to obtain such knowledge is by extracting it (semi-) automatically from incoming visual stimuli. Consequently, at the core of L3ViSU lies the idea of life-long visual learning.

Sufficient data for such an effort is readily available, e.g. through digital TV-channels and media-
sharing Internet platforms, but the question of how to use these resources for building better computer vision systems is wide open. In L3ViSU we will rely on modern machine learning concepts, representing task-independent prior knowledge as prior distributions and function regularizers. This functional form allows them to help solving specific tasks by guiding the solution to ""reasonable"" ones, and to suppress mistakes that violate ""common sense"". The result will not only be improved prediction quality, but also a reduction in the amount of manual supervision necessary, and the possibility to introduce more semantics into computer vision, which has recently been identified as one of the major tasks for the next decade.

L3ViSU is a project on the interface between computer vision and machine learning. Solving it requires expertise in both areas, as it is represented in my research group at IST Austria. The life-long learning concepts developed within L3ViSU, however, will have impact outside of both areas, let it be as basis of life-long learning system with a different focus, such as in bioinformatics, or as a foundation for projects of commercial value, such as more intelligent driver assistance or video surveillance systems."

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2012-StG_20111012
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SG - ERC Starting Grant

Istituzione ospitante

INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA
Contributo UE
€ 1 464 711,68
Indirizzo
Am Campus 1
3400 KLOSTERNEUBURG
Austria

Mostra sulla mappa

Regione
Ostösterreich Niederösterreich Wiener Umland/Nordteil
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0