Cel
As noted by T Y Lam in his book, A first course in noncommutative rings, noncommutative ring theory is a fertile meeting ground for group theory (group rings), representation theory (modules), functional analysis (operator algebras), Lie theory (enveloping algebras), algebraic geometry (finitely generated algebras, differential operators), noncommutative algebraic geometry (graded domains), arithmetic (orders, Brauer groups), universal algebra (co-homology of rings, projective modules) and quantum physics (quantum matrices). As such, noncommutative ring theory is an area which has the potential to produce developments in many areas and in an efficient manner. The main aim of the project is to develop methods which could be applicable not only in ring theory but also in other areas, and then apply them to solve several important open questions in mathematics. The Principal Investigator, along with two PhD students and two post doctorates, propose to: study basic open questions on infinite dimensional associative noncommutative algebras; pool their expertise so as to tackle problems from a number of related areas of mathematics using noncommutative ring theory, and develop new approaches to existing problems that will benefit future researchers. A part of our methodology would be to first improve (in some cases) Bergman's Diamond Lemma, and then apply it to several open problems. The Diamond Lemma gives bases for the algebras defined by given sets of relations. In general, it is very difficult to determine if the algebra given by a concrete set of relations is non-trivial or infinite dimensional. Our approach is to introduce smaller rings, which we will call platinum rings. The next step would then be to apply the Diamond Lemma to the platinum ring instead of the original rings. Such results would have many applications in group theory, noncommutative projective geometry, nonassociative algebras and no doubt other areas as well.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze nauki fizyczne fizyka kwantowa
- nauki przyrodnicze nauki chemiczne chemia nieorganiczna metale przejściowe
- nauki przyrodnicze matematyka matematyka czysta analiza matematyczna analiza funkcjonalna
- nauki przyrodnicze matematyka matematyka czysta geometria
- nauki przyrodnicze matematyka matematyka czysta algebra geometria algebraiczna
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
ERC-2012-ADG_20120216
Zobacz inne projekty w ramach tego zaproszenia
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Instytucja przyjmująca
EH8 9YL Edinburgh
Zjednoczone Królestwo
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.