Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Representation theory of quantum algebras and their semi-classical limits

Obiettivo

The proposed research of this proposal is in algebraic Lie theory and Poisson geometry, two fields of pure mathematics with strong interactions with other sciences including computing science, chemistry, physics and economics.

In recent works, the applicant developed new techniques from combinatorics/graph theory in order to study the representation theory of quantised coordinate rings, whereas the host has been developing algorithmic methods in order to study the representation theory of these noncommutative algebras.

A motivating factor for the existence of this project is the desire to unite these disparate approaches to the study of quantum algebras in the hope that rapid and deep progress can then be made. That this is feasible is supported by three recent articles of the applicant and the host where combining their techniques led to the solution of a long-awaited results on the dimension of certain algebraic varieties appearing in the context of quantum algebras.

More precisely, the aim of this project is to combine the techniques developed by the applicant on one hand, and by the host on the other hand, in order to fully understand the space of primitive ideals of certain class of noncommutative algebras of current interests such as quantum (affine) Schubert cells, quantum flag varieties, quantum cluster algebras. In addition, the geometric properties (normality, AS Cohen-Macaulay, AS Gorenstain...) of the prime/primitive quotients will be studied in the spirit of noncommutative algebraic geometry.

All of the noncommutative algebras mentioned are actually deformations of classical varieties, and so these algebras are algebraic deformations of certain Poisson varieties. The second main aim of the project is to use these new techniques in order to understand the link between the primitive ideals of these noncommutative algebras with the symplectic leaves of their semi-classical limits.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP7-PEOPLE-2012-IIF
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MC-IIF - International Incoming Fellowships (IIF)

Coordinatore

UNIVERSITY OF KENT
Contributo UE
€ 231 283,20
Indirizzo
THE REGISTRY CANTERBURY
CT2 7NZ Canterbury, Kent
Regno Unito

Mostra sulla mappa

Regione
South East (England) Kent East Kent
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0