Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-05-27

Low-dimensional and Non-autonomous Dynamics

Obiettivo

This research project aims at making significant contributions to the bifurcation theory for non-autonomous (i.e. forced or random) dynamical systems.

Dynamical systems is a very active research field, with a plethora of applications in other areas of mathematics as well as the applied sciences. Many dynamical systems arising from real-world applications are forced (non-autonomous), that is, driven by some external system or noise. In recent decades, there has been steadily growing interest in the theory of non-autonomous dynamical systems, which was mainly motivated by applications in physics, biology, engineering, chemistry, economics, ecology and other disciplines.

Mathematical modelling is used extensively in engineering, and the natural and social sciences and typically gives rise to complicated dynamical systems depending on one or several parameters. Fluctuations in these physical parameters can lead to qualitative changes in the behaviour of the system (when a parameter reaches a critical value), referred to as a bifurcation or critical transition, where a sudden change in the dynamics is observed.

Bifurcations and critical transitions occur in a wide variety of applications including climate change, medicine, and economics, and the understanding of the dynamical behaviour of systems near bifurcation points plays an important role to control and attenuate the expected consequences.

The main aim of this research project, is to develop insights and tools in order to complement the study of non-autonomous bifurcation theory. The proposal contains the following research directions:

1. The development of a non-autonomous bifurcation theory for deterministic dynamical systems.
2. The development of a general qualitative theory for forced monotone interval maps with transitive forcing.
3. The development of a bifurcation theory for random dynamical systems.
4. The description and rigorous analysis of the stochastic Hopf bifurcation.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP7-PEOPLE-2012-IEF
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MC-IEF - Intra-European Fellowships (IEF)

Coordinatore

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Contributo UE
€ 221 606,40
Indirizzo
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
Regno Unito

Mostra sulla mappa

Regione
London Inner London — West Westminster
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0