Obiettivo
"Much of geometry and topology of algebraic varieties is hidden in their singular points. To extract this information one typically compares invariants of a singular variety to those of its smoothing deformation or resolution. This gives two fundamental invariants of a singular point: the Milnor number and the singularity genus.
They were studied by many geometers and topologists. In particular, the relation between the Milnor number and singularity genus has been a hot topic since 50's. The case of curve singularities is elementary. Already for normal surface singularities these two invariants are related via combinatorial invariants of resolution graph and topological invariants of the link. Thus for a long time there has been a quest for a simple relation/inequality involving only Milnor number and singularity genus.
In 1978 A.Durfee stated a conjectural bound for isolated surface singularities that are complete intersections. After a long chain of partial confirmations and verifications the conjectural bound was stated for isolated complete intersections in arbitrary dimension.
Surprisingly, we found counterexamples to this conjecture. We succeeded to formulate the asymptotically sharp form of the bound and proved it for a large class of singularities.
In the current project I intend to prove the (corrected) Durfee bound for complete intersection surface singularities. In higher dimensions I hope to prove the bound for those hypersurface singularities that admit especially nice resolutions (by blowing up at centers of a particular type). This will be done by tracing the change of invariants at each blowup, reducing the problem to some particular singularities, ""building blocks"".
In parallel I intend to develop methods to trace the change-under-modification for other singularity invariants, such as the signature of the singularity and the zeta functions. This will open the possibility to establish for them various new bounds/relations."
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali matematica matematica pura topologia
- scienze naturali matematica matematica pura geometria
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
FP7-PEOPLE-2012-CIG
Vedi altri progetti per questo bando
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
MC-CIG - Support for training and career development of researcher (CIG)
Coordinatore
84105 Beer Sheva
Israele
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.