Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-05-28

Codimension-one properties of singularities

Ziel

Our entire scientific understanding of nature is based on various types of systems of equations (linear, polynomial, analytic, differential) and their solutions. Singularities are points of local instability of these equations that can have tremendous impact on the global behavior of solutions. Thus, singularity theory is fundamentally important for mathematics and natural sciences.
For polynomial/analytic equations, the singular locus is that of failure of the manifold structure of the solution space and can be described in terms of differential forms. An main tool to study this phenomenon is desingularization which relates complicated singularities to simple ones - normal crossing divisors. Normalization is a step in this direction that removes singularities in codimension one.
Codim1Sing will ultimately lead to the first simple algebraic conditions characterizing normal crossing properties. To this end, a widely laid-out research project will be completed: Kyoji Saito's theory of logarithmic forms will be embedded into the theory of regular differential forms of Kersken and Kunz/Waldi and generalized beyond the hypersurface case, including the concept of free divisors crucial in singularity theory. In the process, Codim1Sing discovers the geometric meaning of deep algebraic conditions in terms of regular differential forms and (natural partial) normalizations. The project's innovative results include generalizations of the Le-Saito theorem, a proof of Faber's conjecture, as well as novel insights in the geometry of free divisors and in Vasconcelos' normalization algorithm.
Codim1Sing addresses fundamental constructions and objects in singularity theory and it advances long-term collaborations between experts in Europe and worldwide, notably North America. Consequently, it comprises knowledge transfer within and into the EU, the introduction of novel approaches and the sustained reintegration of a high-potential researcher into the European science community.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

FP7-PEOPLE-2012-CIG
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MC-CIG - Support for training and career development of researcher (CIG)

Koordinator

RHEINLAND-PFALZISCHE TECHNISCHE UNIVERSITAT
EU-Beitrag
€ 100 000,00
Adresse
GOTTLIEB DAIMLER STRASSE
67663 KAISERSLAUTERN
Deutschland

Auf der Karte ansehen

Region
Rheinland-Pfalz Rheinhessen-Pfalz Kaiserslautern, Kreisfreie Stadt
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten
Mein Booklet 0 0