Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-05-28

Codimension-one properties of singularities

Cel

Our entire scientific understanding of nature is based on various types of systems of equations (linear, polynomial, analytic, differential) and their solutions. Singularities are points of local instability of these equations that can have tremendous impact on the global behavior of solutions. Thus, singularity theory is fundamentally important for mathematics and natural sciences.
For polynomial/analytic equations, the singular locus is that of failure of the manifold structure of the solution space and can be described in terms of differential forms. An main tool to study this phenomenon is desingularization which relates complicated singularities to simple ones - normal crossing divisors. Normalization is a step in this direction that removes singularities in codimension one.
Codim1Sing will ultimately lead to the first simple algebraic conditions characterizing normal crossing properties. To this end, a widely laid-out research project will be completed: Kyoji Saito's theory of logarithmic forms will be embedded into the theory of regular differential forms of Kersken and Kunz/Waldi and generalized beyond the hypersurface case, including the concept of free divisors crucial in singularity theory. In the process, Codim1Sing discovers the geometric meaning of deep algebraic conditions in terms of regular differential forms and (natural partial) normalizations. The project's innovative results include generalizations of the Le-Saito theorem, a proof of Faber's conjecture, as well as novel insights in the geometry of free divisors and in Vasconcelos' normalization algorithm.
Codim1Sing addresses fundamental constructions and objects in singularity theory and it advances long-term collaborations between experts in Europe and worldwide, notably North America. Consequently, it comprises knowledge transfer within and into the EU, the introduction of novel approaches and the sustained reintegration of a high-potential researcher into the European science community.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

FP7-PEOPLE-2012-CIG
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MC-CIG - Support for training and career development of researcher (CIG)

Koordynator

RHEINLAND-PFALZISCHE TECHNISCHE UNIVERSITAT
Wkład UE
€ 100 000,00
Adres
GOTTLIEB DAIMLER STRASSE
67663 KAISERSLAUTERN
Niemcy

Zobacz na mapie

Region
Rheinland-Pfalz Rheinhessen-Pfalz Kaiserslautern, Kreisfreie Stadt
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0